首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
HDL has been considered to be a protective factor in sepsis; however, most contributing studies were conducted using the endotoxic animal model, and evidence from clinically relevant septic animal models remains limited and controversial. Furthermore, little is known about the roles of HDL in sepsis other than LPS neutralization. In this study, we employed cecal ligation and puncture (CLP), a clinically relevant septic animal model, and utilized apoA-I knock-out (KO) and transgenic mice to elucidate the roles of HDL in sepsis. ApoA-I-KO mice were more susceptible to CLP-induced septic death as shown by the 47.1% survival of apoA-I-KO mice versus the 76.7% survival of C57BL/6J (B6) mice (p = 0.038). ApoA-I-KO mice had exacerbated inflammatory cytokine production during sepsis compared with B6 mice. Further study indicated that serum from apoA-I-KO mice displayed less capacity for LPS neutralization compared with serum from B6 mice. In addition, apoA-I-KO mice had less LPS clearance, reduced corticosterone generation, and impaired leukocyte recruitment in sepsis. In contrast to apoA-I-KO mice, apoA-I transgenic mice were moderately resistant to CLP-induced septic death compared with B6 mice. In conclusion, our findings reveal multiple protective roles of HDL in CLP-induced sepsis. In addition to its well established role in neutralization of LPS, HDL exerts its protection against sepsis through promoting LPS clearance and modulating corticosterone production and leukocyte recruitment. Our study supports efforts to raise HDL levels as a therapeutic approach for sepsis.  相似文献   

2.
Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance.  相似文献   

3.
Subclinical super-low-dose endotoxin LPS is a risk factor for the establishment of low-grade inflammation during the pathogenesis and progression of chronic diseases. However, the underlying mechanisms are not well understood. At the cellular level, a disruption of lysosome fusion with endosomes or autophagosomes may contribute to the potentiation of low-grade inflammation. In this study, we identified that subclinical super-low-dose endotoxin LPS can potently inhibit the process of endosome acidification and lysosome fusion with endosomes or autophagosomes in primary macrophages. Super-low-dose LPS induced the inhibitory phosphorylation of VPS34, thus leading to the disruption of endosome-lysosome fusion. This effect may depend upon the clearance and relocation of Tollip in macrophages by super-low-dose LPS. Consistent with this notion, Tollip-deficient macrophages had constitutively elevated levels of VPS34 inhibitory phosphorylation and constitutive disruption of endosome-lysosome fusion. By employing a skin excision wound-healing model, we observed that Tollip-deficient mice had significantly elevated levels of cell stress and reduced wound repair. This study reveals a novel mechanism responsible for the modulation of endosome-lysosome fusion and low-grade inflammation in innate macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号