首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg-1 h-1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

2.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg?1 h?1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

3.
Penicillium expansum lipase (PEL) was used to catalyze biodiesel production from corn oil in [BMIm][PF6]1 (an ionic liquid, IL) and tert-butanol. Both systems were optimized in terms of MeOH/oil molar ratio, reaction temperature, enzyme loading, solvent volume, and water content. The high conversion obtained in the IL (86%) as compared to that in tert-butanol (52%) demonstrates that the IL is a superior solvent for PEL-catalyzed biodiesel production. Poor yields were obtained in a series of hydrophilic ILs. Addition of salt hydrates affected biodiesel production predominantly through the specific ion (Hofmeister) effect. The impact of methanol on both activity and stability of PEL in the IL and in hexane was investigated, in comparison to the results obtained by two commonly used lipases, Novozym 435 and Lipozyme TLIM. The results substantiate that while different lipases show different resistance to methanol in different reaction systems, PEL is tolerant to methanol in both systems.  相似文献   

4.
An inexpensive self-made immobilized lipase from Penicillium expansum was shown to be an efficient biocatalyst for biodiesel production from waste oil with high acid value in organic solvent. It was revealed that water from the esterification of free fatty acids and methanol prohibited a high methyl ester yield. Adsorbents could effectively control the concentration of water in the reaction system, resulting in an improved methyl ester yield. Silica gel was proved to be the optimal adsorbent, affording a ME yield of 92.8% after 7 h. Moreover, the enzyme preparation displayed a higher stability in waste oil than in corn oil, with 68.4% of the original enzymatic activity retained after being reused for 10 batches.  相似文献   

5.
PF898 is a strain of Penicillium expansum optimized for the high level production of Penicillium expansum lipase (PEL). This PEL is unique compared with other lipases in several aspects, For example, the PEL shows low sequence identities (<30%) to all other known lipases, and high percentage of hydrophobic residues in the N-terminal region. The PEL was purified to homogeneity and shown to be 28 kDa by SDS-PAGE. Crystals suitable for X-ray diffraction analysis were obtained by the sitting-drop method of vapor diffusion with ammonia sulfate as the precipitating agent at 298 K. The crystals have tetragonal lattice and unit-cell parameters of a=b=88.09 A, c=126.54 A. Diffraction data were collected to a resolution of 2.08 A on an in-house rotating-anode generator.  相似文献   

6.
The shape of the hydrophobic tunnel leading to the active site of Penicillium expansum lipase (PEL) was redesigned by single-point mutations, in order to better understand enzyme enantioselectivity towards naproxen. A variant with a valine-to-glycine substitution at residue 237 exhibited almost no enantioselectivity (E = 1.1) compared with that (E = 104) of wild-type PEL. The function of the residue, Val237, in the hydrophobic tunnel was further analyzed by site-directed mutagenesis. For each of these variants a significant decrease of enantioselectivity (E < 7) was observed compared with that of wild-type enzyme. Further docking result showed that Val237 plays the most important role in stabilizing the correct orientation of (R)-naproxen. Overall, these results indicate that the residue Val237 is the key amino acid residue maintaining the enantioselectivity of the lipase.  相似文献   

7.
Cross-linked enzyme aggregates (CLEA®) were prepared from laccases from three different sources: Trametes versicolor, Trametes villosa and Agaricus bisporus. The effect of the various parameters – nature of the precipitant, pH, temperature, glutaraldehyde concentration and cross-linking time – on the activity recovery and storage and operational stability of the resulting CLEAs was different. The laccase CLEAs exhibited the expected increased stability compared to the free enzyme but there was no direct correlation with the number of surface lysine residues in the latter. It is clearly not the only parameter influencing the properties of the CLEA. Co-aggregation with albumin did not improve the stability. The laccase CLEAs, in combination with the stable N-oxy radical, TEMPO, were shown to be active and stable catalysts for the aerobic oxidation of linear C5–C10 aliphatic alcohols, to the corresponding aldehydes, in aqueous buffer (pH 4). Rates were an order of magnitude higher than those observed with the corresponding free enzyme and the CLEAs could be recycled several times without appreciable loss of activity. The addition of water immiscible or water miscible solvents showed no further improvement in rate compared with reactions in aqueous buffer alone.  相似文献   

8.
Dai D  Xia L 《Biotechnology progress》2005,21(4):1165-1168
Alkaline lipase production was performed in submerged fermentation by Penicillium expansum PED-03. It was found that the suitable carbon source and nitrogen source for lipase production were 0.5% starch and 4.0% soybean meal, respectively. The maximal lipase activity (850 U/mL) of production was achieved at initial pH 5.5-6.0, 26 degrees C, 72 h. Tween-80 was an effective enhancer for lipase production. Agitation speed of the fermentor played an important role, and the suitable agitation speed for lipase production was 500 r/min. The lipase was stable within the range of pH 7.0-10.0 and 20-40 degrees C, and the optimum conditions for the enzymatic reaction were 35 degrees C and pH 9.5. The enzymatic resolution of racemic allethrolone (4-hydroxy-3-methyl-2-(2-propenyl)-2- cyclopenten-1-one) was carried out by the lipase from P. expansum PED-03, and the conversion reached 48% with excellent enantioselectivity (E > 100), which showed a good application potential in the production of optically pure allethrolone.  相似文献   

9.
Waste eggshell was investigated in triglyceride transesterification with a view to determine its viability as a solid catalyst for use in biodiesel synthesis. Effect of calcination temperature on structure and activity of eggshell catalysts was investigated. Reusability of eggshell catalysts was also examined. It was found that high active, reusable solid catalyst was obtained by just calcining eggshell. Utilization of eggshell as a catalyst for biodiesel production not only provides a cost-effective and environmental friendly way of recycling this solid eggshell waste, significantly reducing its environmental effects, but also reduces the price of biodiesel to make biodiesel competitive with petroleum diesel.  相似文献   

10.
研究了由扩展青霉(Peniciliumexpansum)PF868产生脂肪酶催化水解三种油脂(橄榄油、豆油、鱼油)的影响因素与工艺条件,其中包括:水解时间、温度、pH、酶量、油水比及添加剂,并用气相色谱对产品脂肪酸进行了分析鉴定,初步分析其催化水解的脂肪酸的特异性  相似文献   

11.
Error-prone PCR was used to create more active or enantioselective variants of Penicillium expansum lipase (PEL). A variant with a valine to glycine substitution at residue 72 in the lid structure exhibited higher activity and enantioselectivity than those of wild-type PEL. Site-directed saturation mutagenesis was used to explore the sequence-function relationship and the substitution of Val72 of P. expansum lipase changed both catalytic activity and enantioselectivity greatly. The variant V72A, displayed a highest enantioselectivity enhanced to about twofold for the resolution of (R, S)-naproxen (E value increased from 104 to 200.7 for wild-type PEL and V72A variant, respectively). In comparison to PEL, the variant V72A showed a remarkable increase in specific activity towards p-nitrophenyl palmitate (11- and 4-fold increase at 25 and 35?°C, respectively) whereas it had a decreased thermostability. The results suggest that the enantioselective variant V72A could be used for the production of pharmaceutical drugs such as enantiomerically pure (S)-naproxen and the residue Val 72 of P. expansum lipase plays a significant role in the enantioselectivity and activity of this enantioselective lipase.  相似文献   

12.
AIMS: Optimization of 6-aminopenicillanic acid (6-APA) production using cross-linked enzyme aggregates (CLEA) of Bacillus badius penicillin G acylase (PAC). METHODS AND RESULTS: CLEA-PAC was prepared using purified/partially purified PAC with phenylacetic acid as active-site blocking agent and glutaraldehyde as cross-linker. Conversion of penicillin G to 6-APA by CLEA-PAC was optimized using response surface methodology (RSM) (central composite rotatable design) consisting of a three-factor-two-level pattern with 20 experimental runs. CONCLUSION: Nearly, 80% of immobilization yield was obtained when partially purified enzyme was used for the preparation of CLEA-PAC. Quantitative conversion of penicillin G to 6-APA was observed within 60 min and the CLEA-PAC was reusable for 20 repeated cycles with 100% retention of enzyme activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The faster conversion of penicillin G to 6-APA by CLEA-PAC and efficient reusability holds a strong potential for the industrial application.  相似文献   

13.
Addition of bovine serum albumin (BSA) as a proteic feeder facilitates obtaining cross-linked enzyme aggregates (CLEAs) in cases where the protein concentration in the enzyme preparation is low and/or the enzyme activity is vulnerable to the high concentration of glutaraldehyde required to obtain aggregates. CLEAs of Pseudomonas cepacia lipase and penicillin acylase were prepared. CLEA of lipase prepared in the presence of BSA retained 100% activity whereas CLEA prepared without BSA retained only 0.4% activity of the starting enzyme preparation. Lipase CLEA showed 12-fold increase in activity over free enzyme powder when the CLEA was used in transesterification of tributyrin. For the transesterification of Jatropha oil, while free enzyme powder required 8 h and 50 mg lipase to obtain 77% conversion, CLEA required only 6 h and 6.25 mg lipase to obtain 90% conversion. In the case of penicillin acylase, 86% activity could be retained in CLEA prepared with BSA whereas CLEA made without BSA retained only 50% activity. CLEA prepared without BSA lost 20% activity after 8 h at 45 degrees C whereas CLEA with BSA retained full activity. CLEA prepared with BSA showed Vmax/Km of 36.3 min-1 whereas CLEA prepared without BSA had Vmax/Km of 17.4 min-1 only. Scanning electron microscopy analysis showed that CLEAs prepared in the presence of BSA were less amorphous and closer in morphology to CLEAs of other enzymes described in the literature.  相似文献   

14.
Penicillium cyclopium triacylglycerol lipase production was maximized in stationary batch culture. We used a surface response methodology based on a Doehlert experimental design to study the effect on the lipase activity released in the culture medium of the three most important factors: substrate concentration, pH and inoculum. Besides reducing the number of experiments required for optimization, this technique allowed us to quantify the lipase activity in any part of the experimental domain.We determined an optimal set of conditions for high lipase production: 1% substrate (corn steep), pH 5.5 and an inoculum of 10(4) spores/ml. Between conditions giving the minimum and the maximum lipase production, we observed a nine-fold increase of both the predicted and measured values.  相似文献   

15.
16.
Cross-linked enzyme aggregates (CLEAs) of lipase from Thermomyces lanuginosa (TLL) were synthesized using (NH4)2SO4 as precipitant and glutaraldehyde as cross-linking agent. CLEAs were assayed for their hydrolytic activity in a reaction performed in an emulsioned medium. The effects of the amount of precipitant, cross-linker, and different additives such as protein cofeeder, oleic acid, n-heptane, sodium dodecyl sulfate (SDS), polyethylenglicol (PEG) and ethylendiamine were studied at selected ratios with respect to TLL mass. Traditional non-layered CLEAs of TLL showed recovered activities between 3 and 31% when compared with native lipase. Novel TLL layered CLEAs consisting of a protein cofeeder core and successive layers of target lipase showed an important increase in their retained activity. The highest recovered activity was found for the one-layered non-additivated CLEAs of TLL which showed a recovered activity of 75%.  相似文献   

17.
Li Z  Li X  Wang Y  Wang Y  Wang F  Jiang J 《Bioresource technology》2011,102(20):9810-9813
The Rhizopus oryzae lipase containing prosequence was expressed in Pichia pastoris. Recombinant lipase subunit showed a molecular mass of 32 kDa. The maximum activity of recombinant lipase obtained from Mut(s) recombinant was 90 IU/ml. The enzyme was stable in broad ranges of temperatures and pH, with the optimal temperature at 35 °C and pH 7.0. The crude recombinant R. oryzae lipase can be directly used for the transesterification of plant oils at high-water content of 60-100% (w/w) based on oil weight. The addition of 80% water to the transesterification systems resulted in the yield of methyl ester of 95%, 94% and 92% after 72 h using soybean oil, Jatropha curcas seed raw oil and Pistacia chinensis seed raw oil as raw material, respectively. These results indicate that the recombinant lipase is an effective biocatalyst for enzymatic biodiesel production.  相似文献   

18.
Yan J  Yan Y  Liu S  Hu J  Wang G 《Bioresource technology》2011,102(7):4755-4758
A dual modification procedure composed of cross-linking and protein coating with K2SO4 was employed to modify Geotrichum sp. lipase for catalyzing biodiesel production from waste cooking oil. Compared to single modification of protein coating with K2SO4, the dual modification of cross-linking and lipase coating improved catalytic properties in terms of thermostable stability, organic solvent tolerance, pH stability and operational stability in biodiesel production process, although biodiesel yield and initial reaction rate for CLPCMCs were not improved. After five successive batch reactions, CLPCMCs could still maintain 80% of relative biodiesel yield. CLPCMCs retained 64% of relative biodiesel yield after incubation in a pH range of 4-6 for 4 h, and 85% of relative biodiesel yield after incubation in a range of 45-50 °C for 4 h. CLPCMCs still maintained 83% of relative biodiesel yield after both treated in polar organic solvent and non-polar organic solvent for 4 h.  相似文献   

19.
20.
In this study, we expressed lipase 2 from Candida sp. 99-125 in Saccharomyces cerevisiae, and tried direct biodiesel production. Driven by 3-phosphoglycerate kinase promoter, Lip2 showed high expression level in cytoplasm. SDS-PAGE analysis confirmed the successful lipase expression with a 40 kDa molecular weight. The enzyme assay indicated that lipase 2 had a specific activity of 12.12 μmol/min/mg toward p-nitrophenyl palmitate. Gas chromatography showed that the main fatty acids of S. cerevisiae lipids were palmitoleic acid (31.79%) and oleic acid (29.84%). By three-step addition of 4% ethanol to culture broth, the yield of fatty acid ethyl esters by recombinant S. cerevisiae reached 11.4 mg/g dry cell weight. This work proposed a novel pathway for S. cerevisiae that could be applied for producing biodiesel directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号