首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases.  相似文献   

2.
Ethanol extract obtained from dried leaves of Acmella oleracea afforded after a liquid/liquid partition procedure a larvicidal hexane fraction (LC50 = 145.6 ppm) and a non larvicidal dichloromethane one. From the inactive fraction, three amides were identified, two new structures, named deca-6,9-dihydroxy-(2E,7E)-dienoic acid isobutylamide (1), deca-8,9-dihydroxy-(2E,6Z)-dienoic acid isobutylamide (2) and the known nona-2,3-dihydroxy-6,8-diynoic acid 2-phenylethylamide (3). Bioassay-guided chromatographic fractionation of the hexane partition led to the identification of an amide mixture, nona-(2Z)-en-6,8-diynoic acid 2-phenylethylamide (4) and deca-(2Z)-en-6,8-diynoic acid 2-phenylethlylamide (5). This mixture was active against Aedes aegypti larvae at LC50 = 7.6 ppm. Low toxicity of crude extracts and derived fractions on Artemia salina nauplies showed the possibility of using them to control the A. aegypti mosquito larvae. This is the first report on larvicidal activity of acetylenic 2-phenylethylamides and their identification in A. oleracea leaves.  相似文献   

3.
Hydro-distilled essential oil from Kenyan Piper capense (Piperaceae) was analysed by gas chromatography mass spectrometry (GC–MS) and evaluated for larvicidal activity against the malaria vector, Anopheles gambiae. The oil consisted mainly of sesquiterpene hydrocarbons which accounted for 43.9% of the oil. The major sesquiterpenes were δ-cadinene (16.82%), β-bisabolene (5.65%), and bicyclogermacrene (3.30%). The oil also had appreciable amounts of monoterpene hydrocarbons (30.64%), including β-pinene (7.24%) and α-phellandrene (4.76%), and arylpropanoids (8.64%), including myristicin (4.26%). The oil showed larvicidal activity against third instar larvae of A. gambiae, with LC50 and LC90 values of 34.9 and 85.0 ppm, respectively. Most of the larvae died within the first few hours. The high larvicidal activity of this oil was indicated by the fact that over 80% mortality was observed at a concentration of 100 ppm after 24 h. These results compared favourably with the commercial larvicide pylarvex® which had LC50 and LC90 values of 3.7 and 7.8 ppm, respectively. Application of this oil or of products derived from it to larval habitats may lead to promising results in malaria and mosquito management programmes.  相似文献   

4.
The essential oils of leaves, stems and inflorescences of Piper marginatum, harvested in the Atlantic forest in the State of Pernambuco, Brazil, were obtained by hydrodistillation. GC and GC–MS analyses revealed the presence of 40 components accounting, respectively, for 99.6%, 99.7% and 99.1% of the leaf, stem and inflorescence oil, the most abundant being (Z)- or (E)-asarone and patchouli alcohol. The essential oil of the inflorescences exhibited potent activity against the 4th instar of Aedes aegypti with LC10 and LC50 values of 13.8 and 20.0 ppm, respectively. Furthermore, the inflorescence oil did not interfere in the oviposition of A. aegypti females when assayed at 50 ppm. These properties suggest that P. marginatum oil is a potential source of valuable larvicidal compounds for direct use or in conjunction with baits in traps constructed to capture eggs and larvae.  相似文献   

5.
Four different extracts of Aloe vera L. leaves were evaluated for acaricidal activity against female adults of carmine spider mite, Tetranychus cinnabarinus (Boisduval), by slide-dip bioassay. At 72 h after treatment, the acetone extract showed the strongest acaricidal activity with LC50 value of 90 ppm. The LC50 values for ethyl acetate, water, and ethanol extracts were 113, 340, and 391 ppm, respectively. The acetone extract was fractionated using a silica gel column. Among the twenty-two fractions obtained the fifth, tenth, eleventh, twelfth, fifteenth, and seventeenth fractions showed strong acaricidal activity, causing 80.39 to 92.16% mortality at 72 h after treatment. The tenth and eleventh fractions had the strong activity, with LC50 values of 44 ppm and 33 ppm, respectively. The results suggested that A. vera has a great potential for development as a botanical acaricide for T. cinnabarinus control.  相似文献   

6.
Alternative control strategies for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides. They are believed to pose little threat to the environment or to human health and may provide practical substitutes for synthetic insecticides. In this study, we determined the biological activities of methanol extracts of Acalypha indica L. (Euphorbiaceae) and Achyranthes aspera L (Amaranthaceae) leaves individually and in combination as botanical insecticides against Ae. aegypti. Based on LC50 values for 4th instar Ae. aegypti, the combined extracts showed the strongest larvicidal activity (277 ppm). A. aspera and A. indica extracts individually gave similar results (409 and 420 ppm, respectively). Respective LC50 values for pupae were 326 ppm, 456 ppm, and 467 ppm. In studies of smoke toxicity, 64% of females exposed to negative control smoke (no extract) blood fed on chicken, whereas 17% blood fed when exposed to smoke containing A. aspera extract and to positive control smoke (0.2% d-allethrin). In the field, treatment of water storage tanks (≈ 0.5 m3) with combined plant extract reduced larval and pupal populations by 97% and 81%, respectively, after 5 days. Given the results of this study, further evaluation of the combined (A. indica + A. aspera) extract as a mosquito larvicide is warranted. Mosquito coils with A. aspera extract also show promise as a practical and potentially economical means for mitigating mosquito blood feeding.  相似文献   

7.
《Journal of Asia》2014,17(3):531-535
The dichloromethane/methanol (1:1) extract of the stem bark of Millettia usaramensis subspecies usaramensis was tested for its larvicidal activity against the 4th instar Aedes aegypti larvae and demonstrated activity with LC50 value of 50.8 ± 0.06 μg/mL at 48 h. Compounds isolated from the extract were also tested for their larvicidal activities, and the rotenoid usararotenoid-A (LC50 4.3 ± 0.8 μg/mL at 48 h) was identified as the most active principle. This compound appears to be the first rotenoid having a trans-B/C ring junction and methylenedioxy group at C-2/C-3 with high larvicidal activity. Related rotenoids with the same configuration at the B/C-ring junction did not show significant activity at 100 μg/mL.  相似文献   

8.
Larvicidal activity of essential oil and isolated compounds from Clausena dentata leaves were tested against early fourth instar Aedes aegypti larvae. GC–MS analysis of essential oil revealed the presence of fourteen compounds of which the major compounds were sabinene (21.27%), biofloratriene (19.61%), borneol (18.34%) and β-bisabolol (17.68%). The essential oil of C. dentata exhibited significant larvicidal activity, with 24 h LC50 and LC90 values of 140.2 and 341.6 mg/l, respectively. Larvicidal activities of the four major compounds of essential oil were also tested. The LC50 values of sabinene, biofloratriene, borneol and β-bisabolol were 27.3, 47.4, 43.5 and 33.2 mg/l, respectively. Results of this study show that the leaf essential oil of C. dentata and its four major compounds may be a potent source of natural larvicides.  相似文献   

9.
Antifeedant and larvicidal activities of rhein (1,8-dihydroxyanthraquinone-3-carboxylic acid) isolated from the ethyl acetate extract of Cassia fistula flower were studied against lepidopteron pests Spodoptera litura and Helicoverpa armigera. Significant antifeedant activity was observed against H. armigera (76.13%) at 1000 ppm concentration. Rhein exhibited larvicidal activity against H. armigera (67.5), S. litura (36.25%) and the LC50 values was 606.50 ppm for H. armigera and 1192.55 ppm for S.litura. The survived larvae produced malformed adults.  相似文献   

10.
Bacillus sphaericus strain 1593 and B. thuringiensis serotype H-14 were evaluated for persistence of toxicity against two species of mosquito larvae, Culex quinquefasciatus and Aedes aegypti, in a selected simulating plot in Bangkok. Both strains of bacteria demonstrated larvicidal activity towards both species of mosquito larvae. In tap water, the toxicity of B. sphaericus strain 1593 was found to be greater towards C. quinquefasciatus larvae than A. aegypti larvae, whereas the toxicity of B. thuringiensis serotype H-14 was found to be greater towards A. aegypti larvae than C. quinquefasciatus larvae. The persistence of toxicity of these two bacteria was found to be different. The lethal concentration of B. thuriengiensis H-14 against A. aegypti decreased from LC90 to below LC50 in about 15 weeks when tested in tap water. The decrease was faster in polluted water. The toxicity of B. sphaericus 1593 towards C. quinquefasciatus larvae persisted for at least 9 months in tap water and 6 months in polluted water. The multiplication of bacteria was indicated only in populations of B. sphaericus 1593 tested with C. quinquefasciatus larvae.  相似文献   

11.
Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae) were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC50 and LC90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens. However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.  相似文献   

12.
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.  相似文献   

13.
This study investigated the phytochemical, antioxidative, antimicrobial and cytotoxic effects of Leea indica leaf ethanol extract. Phytochemical values namely total phenolic and flavonoid contents, total antioxidant capacity, DPPH radical scavenging effect, FeCl3 reducing power, DMSO superoxide scavenging effect and Iron chelating effects were studied by established methods. Antibacterial, antifungal and cytotoxic effects were screened by disk diffusion technique, food poison technique and brine shrimp bioassay, respectively. Results showed the total phenolic content 24.00 ± 0.81 g GAE/100 g, total flavonoid content 194.68 ± 2.43 g quercetin/100 g and total antioxidant capacity 106.61 ± 1.84 g AA/100 g dry extract. Significant (P < 0.05) IC50 values compared to respective standards were recorded in DPPH radical scavenging (139.83 ± 1.40 μg/ml), FeCl3 reduction (16.48 ± 0.64 μg/ml), DMSO superoxide scavenging (676.08 ± 5.80 μg/ml) and Iron chelating (519.33 ± 16.96 μg/ml) methods. In antibacterial screening, the extract showed significant (P < 0.05) zone of inhibitions compared to positive controls Ampicillin and Tetracycline against Gram positive Bacillus subtilis, Bacillus cereus, Bacillus megaterium, and Staphylococcus aureus and Gram negative Salmonella typhi, Salmonella paratyphi, Pseudomonas aeroginosa, Shigella dysenteriae, Vibrio cholerae, and Escherichia coli. Significant minimum inhibitory concentrations compared to tetracycline were obtained against the above organisms. In antifungal assay, the extract inhibited the growth of Aspergillus flavus, Candida albicans and Fusarium equisetii by 38.09 ± 0.59, 22.58 ± 2.22, and 22.58 ± 2.22%, respectively. The extract showed a significant LC50 value compared to vincristine sulfate in cytotoxic assay. The results evidenced the potential antioxidative, antimicrobial and cytotoxic capacities of Leea inidica leaf extract to be processed for pharmaceutical use.  相似文献   

14.
The present study aimed to investigate, the larvicidal, adult emergence inhibition and oviposition deterrent activity of aqueous leaves extract of Calotropis procera against Anopheles arabiensis and Culex quinquefasciatus as natural mosquito larvicide. The larvicidal activity was monitored against 2nd, 3rd and 4th instar larvae of each mosquito species 24 h post-treatment. Adult emergence inhibition activity was tested by exposing 3rd instar larvae of each mosquito species to different concentrations of extracts (200, 400, 600, 800 and 1000 ppm for An. arabiensis and 100, 200, 300, 400, 500 and 600 ppm for Cx. quinquefasciatus). Probit analysis was used to analyze data from bioassay experiments. The oviposition deterrent activity was tested by using three different concentrations of extracts (1000, 500 and 200 for An. arabiensis, and 1000, 500 and 100 for Cx. quinquefasciatus) that caused high, moderate and low larval mortality in the larvicidal experiment against 3rd instar larvae. It was found that, LC50–LC90 values calculated were 273.53–783.43, 366.44–1018.59 and 454.99–1224.62 ppm for 2nd, 3rd and 4th larval instars, respectively, of An. arabiensis and 187.93–433.51, 218.27–538.27 and 264.85–769.13 ppm for 2nd, 3rd and 4th larval instars, respectively, of Cx. quinquefasciatus. Fifty percent of adult emergence inhibition (EI50) was shown at 277.90 and 183.65 ppm for An. arabiensis and Cx. quinquefasciatus, respectively. The pupal stage was not affected till a concentration of 5000 ppm. The extract showed oviposition deterrence and effective repellence against both mosquito species at different concentrations, with the observation on that maximal eggs were laid in low concentration of extract. These results suggest that the leaves extract of C. procera possess remarkable larvicidal, adult emergence inhibitor, repellent and oviposition deterrent effect against both An. arabiensis and Cx. quinquefasciatus, and might be used as natural biocides for mosquito control.  相似文献   

15.
Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens.  相似文献   

16.
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides.  相似文献   

17.
Twelve monoterpenes were evaluated for larvicidal and adulticidal activities towards Culex pipiens. Geraniol and cuminaldehyde were the most toxic monoterpenes to larvae, with LC50 values of 38.6 and 38.9 mg/l after 24 h of treatment, respectively, whereas cuminaldehyde was the most potent compound after 48 h of treatment, followed by geraniol and thymol. In fumigant toxicity experiments, (R)-carvone and geraniol were the most toxic monoterpenes against the adults at all three tested concentrations and after both 24 and 48 h. When tested at sublethal concentrations (0.5 LC50), (R)-carvone, (S)-limonene and cuminaldehyde decreased hatchability, pupation and adult emergence and induced high larval mortality. Our results suggest that geraniol, cuminaldehyde and (R)-carvone are promising toxicants against Culex pipiens and could be useful in the search for new natural insecticides.  相似文献   

18.
Essential oils obtained from the flowers of Dendropanax morbifera were extracted and the chemical composition and larvicidal effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC–MS) revealed that the essential oil of D. morbifera contained 27 compounds. The major chemical components identified were γ-elemene (18.59%), tetramethyltricyclohydrocarbon (10.82%), β-selinene (10.41%), α-zingibirene (10.52%), 2-isopropyl-5-methylbicylodecen (4.2%), β-cubebene (4.19), and 2,6-bis(1,1-Dimethylethyl)-4-phenol (4.01%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC50 value of 62.32 ppm and an LC90 value of 131.21 ppm. The results could be useful in search for newer, safer, and more effective natural larvicidal agents against A. aegypti.  相似文献   

19.
The larvicidal activity of essential oils of four species of Piper from the Amazon Forest was tested using third-instar larvae of Aedes aegypti. The oils were extracted by steam distillation and analyzed by GC and GC–MS. The main components isolated from each Piper species were as follows: viridiflorol (27.50%), aromadendrene (15.55%) and β-selinene (10.50%) from Piper gaudichaudianum; β-selinene (15.77%) and caryophyllene oxide (16.63%) from Piper humaytanum; dillapiol (54.70%) and myristicin (25.61%) from Piper permucronatum; and asaricin (27.37%) and myristicin (20.26%) from Piper hostmanianum. Amongst all essential oils tested, the most active against larvae of A. aegypti was the oil extracted from P. permucronatum, with a LC50 = 36 μg/ml (LC90 = 47 μg/ml), followed by the essential oil of P. hostmanianum, with a LC50 = 54 μg/ml (LC90 = 72 μg/ml). The oils with higher content of arylpropanoids were more active against larvae of A. aegypti.  相似文献   

20.
Crude methanol extract of the leaves of Caesalpinia welwitschiana was found to possess moderate larvicidal activity against second-instar larvae of Tuta absoluta Meyrick. Bioassay-guided fractionation of this extract led to the isolation of two oxygenated cyclohexene derivatives, welwitschianalol A (1, (1α,2β)-2-acetoxy-1-hydroxy-1- benzoyloxymethylcyclohex-5-ene) and B (2, (1α,2β)-2- benzoyloxy −1-cinnamoyloxymethyl-1-hydroxycyclohex-5-ene), together with eight known compounds, comprising bonducellin, dipteryxic acid, 3′-hydroxygenkwarin, afzelin, quercitrin, myricitrin, methyl gallate and gallic acid. The structures of the unknown compounds as well as those of the known ones were elucidated based on their MS, 1D and 2D NMR spectra, and in the case of known compounds, by comparison with the reported data. Each of welwitschianalol A and B, bonducellin, dipteryxic acid, afzelin, quercitrin and myricitrin showed more than 50% mortality of T. absoluta larvae at 5 ppm, which was comparable to that of azadirachtin (the most bioactive constituent of Azadirachta indica). The most potent constituent of C. welwitschiana was welwitschianalol B with LD50 of 3.8 ppm, which was higher than that of azadirachtin (LD50 of 7.8 ppm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号