首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa produces and secretes rhamnose-containing glycolipid biosurfactants called rhamnolipids. This review describes rhamnolipid biosynthesis and potential industrial and environmental applications of rhamnolipids. Rhamnolipid production is dependent on central metabolic pathways, such as fatty acid synthesis and dTDP-activated sugars, as well as on enzymes participating in the production of the exopolysaccharide alginate. Synthesis of these surfactants is regulated by a very complex genetic regulatory system that also controls different P. aeruginosa virulence-associated traits. Rhamnolipids have several potential industrial and environmental applications including the production of fine chemicals, the characterization of surfaces and surface coatings, as additives for environmental remediation, and as a biological control agent. Realization of this wide variety of applications requires economical commercial-scale production of rhamnolipids. Received: 4 February 2000 / Received revision: 9 June 2000 / Accepted: 9 June 2000  相似文献   

2.
Rhamnolipids, naturally occurring biosurfactants constructed of rhamnose sugar molecules and β-hydroxyalkanoic acids, have a wide range of potential commercial applications. In the course of a survey of 33 different bacterial isolates, we have identified, using a phenotypic assay for rhamnolipid production, a strain of the nonpathogenic bacterial species Pseudomonas chlororaphis that is capable of producing rhamnolipids. Rhamnolipid production by P. chlororaphis was achieved by growth at room temperature in static cultures of a mineral salts medium containing 2% glucose. We obtained yields of roughly 1 g/liter of rhamnolipids, an amount comparable to the production levels reported in Pseudomonas aeruginosa grown with glucose as the carbon source. The rhamnolipids produced by P. chlororaphis appear to be exclusively the mono-rhamnolipid form. The most prevalent molecular species had one monounsaturated hydroxy fatty acid of 12 carbons and one saturated hydroxy fatty acid of 10 carbons. P. chlororaphis, a nonpathogenic saprophyte of the soil, is currently employed as a biocontrol agent against certain types of plant fungal diseases. The pathogenic nature of all bacteria previously known to produce rhamnolipids has been a major obstacle to commercial production of rhamnolipids. The use of P. chlororaphis therefore greatly simplifies this matter by removing the need for containment systems and stringent separation processes in the production of rhamnolipids.  相似文献   

3.
During the last decade, the demand for economical and sustainable bioprocesses replacing petrochemical-derived products has significantly increased. Rhamnolipids are interesting biosurfactants that might possess a broad industrial application range. However, despite of 60 years of research in the area of rhamnolipid production, the economic feasibility of these glycolipids is pending. Although the biosynthesis and regulatory network are in a big part known, the actual incidents on the cellular and process level during bioreactor cultivation are not mastered. Traditional engineering by random and targeted genetic alteration, process design, and recombinant strategies did not succeed by now. For enhanced process development, there is an urgent need of in-depth information about the rhamnolipid production regulation during bioreactor cultivation to design knowledge-based genetic and process engineering strategies. Rhamnolipids are structurally comparable, simple secondary metabolites and thus have the potential to become instrumental in future secondary metabolite engineering by systems biotechnology. This review summarizes current knowledge about the regulatory and metabolic network of rhamnolipid synthesis and discusses traditional and advanced engineering strategies performed for rhamnolipid production improvement focusing on Pseudomonas aeruginosa. Finally, the opportunities of applying the systems biotechnology toolbox on the whole-cell biocatalyst and bioprocess level for further rhamnolipid production optimization are discussed.  相似文献   

4.
Rhamnolipids, naturally occurring biosurfactants constructed of rhamnose sugar molecules and beta-hydroxyalkanoic acids, have a wide range of potential commercial applications. In the course of a survey of 33 different bacterial isolates, we have identified, using a phenotypic assay for rhamnolipid production, a strain of the nonpathogenic bacterial species Pseudomonas chlororaphis that is capable of producing rhamnolipids. Rhamnolipid production by P. chlororaphis was achieved by growth at room temperature in static cultures of a mineral salts medium containing 2% glucose. We obtained yields of roughly 1 g/liter of rhamnolipids, an amount comparable to the production levels reported in Pseudomonas aeruginosa grown with glucose as the carbon source. The rhamnolipids produced by P. chlororaphis appear to be exclusively the mono-rhamnolipid form. The most prevalent molecular species had one monounsaturated hydroxy fatty acid of 12 carbons and one saturated hydroxy fatty acid of 10 carbons. P. chlororaphis, a nonpathogenic saprophyte of the soil, is currently employed as a biocontrol agent against certain types of plant fungal diseases. The pathogenic nature of all bacteria previously known to produce rhamnolipids has been a major obstacle to commercial production of rhamnolipids. The use of P. chlororaphis therefore greatly simplifies this matter by removing the need for containment systems and stringent separation processes in the production of rhamnolipids.  相似文献   

5.
A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na+, 2Na+ and K+), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3.  相似文献   

6.
A range of isolates of Pseudomonas aeruginosa from widely different environmental sources were examined for their ability to synthesise rhamnolipid biosurfactants. No significant differences in the quantity or composition of the rhamnolipid congeners could be produced by manipulating the growth conditions. Sequences for the rhamnolipid genes indicated low levels of strain variation, and the majority of polymorphisms did lead to amino acid sequence changes that had no evident phenotypic effect. Expression of the rhlB and rhlC rhamnosyltransferase genes showed a fixed sequential expression pattern during growth, and no significant up-regulation could be induced by varying producer strains or growth media. The results indicated that rhamnolipids are highly conserved molecules and that their gene expression has a rather stringent control. This leaves little opportunity to manipulate and greatly increase the yield of rhamnolipids from strains of P. aeruginosa for biotechnological applications.  相似文献   

7.

Background

Rhamnolipids are biosurfactants featuring surface-active properties that render them suitable for a broad range of industrial applications. These properties include their emulsification and foaming capacity, critical micelle concentration, and ability to lower surface tension. Further, aspects like biocompatibility and environmental friendliness are becoming increasingly important. Rhamnolipids are mainly produced by pathogenic bacteria like Pseudomonas aeruginosa. We previously designed and constructed a recombinant Pseudomonas putida KT2440, which synthesizes rhamnolipids by decoupling production from host-intrinsic regulations and cell growth.

Results

Here, the molecular structure of the rhamnolipids, i.e., different congeners produced by engineered P. putida are reported. Natural rhamnolipid producers can synthesize mono- and di-rhamnolipids, containing one or two rhamnose molecules, respectively. Of each type of rhamnolipid four main congeners are produced, deviating in the chain lengths of the β-hydroxy-fatty acids. The resulting eight main rhamnolipid congeners with variable numbers of hydrophobic/hydrophilic residues and their mixtures feature different physico-chemical properties that might lead to diverse applications. We engineered a microbial cell factory to specifically produce three different biosurfactant mixtures: a mixture of di- and mono-rhamnolipids, mono-rhamnolipids only, and hydroxyalkanoyloxy alkanoates, the precursors of rhamnolipid synthesis, consisting only of β-hydroxy-fatty acids. To support the possibility of second generation biosurfactant production with our engineered microbial cell factory, we demonstrate rhamnolipid production from sustainable carbon sources, including glycerol and xylose. A simple purification procedure resulted in biosurfactants with purities of up to 90%. Finally, through determination of properties specific for surface active compounds, we were able to show that the different mixtures indeed feature different physico-chemical characteristics.

Conclusions

The approach demonstrated here is a first step towards the production of designer biosurfactants, tailor-made for specific applications by purposely adjusting the congener composition of the mixtures. Not only were we able to genetically engineer our cell factory to produce specific biosurfactant mixtures, but we also showed that the products are suited for different applications. These designer biosurfactants can be produced as part of a biorefinery from second generation carbon sources such as xylose.
  相似文献   

8.
Glycolipids are one of the major classes of biosurfactants in which the rhamnolipids are best studied. The present work investigates the optimization of inoculum age and batch time for maximizing the yield of rhamnolipid from Pseudomonas aeruginosa (MTCC 2453). The yield and titer of rhamnolipids were maximum in the fermentation batch with an inoculum age of 24?hr. Batch time studies were performed on biomass production, rhamnolipid production, and sunflower oil utilization. The maximum yield of rhamnolipid was achieved at 96?hr when the culture cells were in the late exponential/early stationary phase. At optimum substrate concentration, maximum yield of 10.8?g/L was achieved. Further, downstream processing of crude rhamnolipid from broth using organic solvent extraction and subsequent purification using adsorption chromatography was done. In this study, chromatographic method was developed for purification of rhamnolipid by adsorption phenomena with more than 88.7% purity and 86.5% recovery. The present study provides new perspective on concepts involving separation by adsorption. Further antimicrobial properties and surfactant properties were studied for rhamnolipid production.  相似文献   

9.
Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the organic compound and its availability for uptake by a cell. Second, biosurfactants can cause the cell surface to become more hydrophobic, thereby increasing the association of the cell with the slightly soluble substrate. Since the second mechanism requires very low levels of added biosurfactant, it is the more intriguing of the two mechanisms from the perspective of enhancing the biodegradation process. This is because, in practical terms, addition of low levels of biosurfactants will be more cost-effective for bioremediation. To successfully optimize the use of biosurfactants in the bioremediation process, their effect on cell surfaces must be understood. We report here that rhamnolipid biosurfactant causes the cell surface of Pseudomonas spp. to become hydrophobic through release of lipopolysaccharide (LPS). In this study, two Pseudomonas aeruginosa strains were grown on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content. Loss of fatty acids was due to release of LPS from the outer membrane, as demonstrated by 2-keto-3-deoxyoctonic acid and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and further confirmed by scanning electron microscopy. The amount of LPS loss was found to be dependent on rhamnolipid concentration, but significant loss occurred even at concentrations less than the critical micelle concentration. We conclude that rhamnolipid-induced LPS release is the probable mechanism of enhanced cell surface hydrophobicity.  相似文献   

10.
Biosurfactants are economically most sought after biotechnological compounds of the 21st century. However, inefficient bioprocessing has mitigated the economical commercial production of these compounds. Although much work is being done on the use of low-cost substrates for their production, a paucity of literature exists on the upcoming bioprocess optimization strategies and their successes and potential for economical biosurfactant production. This review discusses some of the latest developments and most promising strategies to enhance and economize the biosurfactant production process. Recent market analysis, developments in the field of optimally formulated cost credit substrates for enhanced product formation and subsequent process economization are few of the critical aspects highlighted here. Use of nanoparticles and coproduction of biosurfactant along with other commercially important compounds like enzymes, are other upcoming bioprocess intensification strategies. The recent developments discussed here would not only give an overview of pertinent parameters for economic biosurfactant production but would also bring to fore multiple strategies that would open up new avenues of research on biosurfactant production. This would go a long way in making biosurfactants a commercially successful compound of the current century.  相似文献   

11.
Eleven biosurfactant producing bacteria were isolated from different petroleum‐contaminated soil and sludge samples. Among these 11 isolates, two were identified as promising, as they reduced the surface tension of culture medium to values below 27 mN m?1. Besides biosurfactant production property, they exhibited good flocculating activity. Microbacterium sp. was identified as a new addition to the list of biosurfactant and bioflocculant‐producers. Optimization of various conditions for rhamnolipid production was carried out for one of the promising isolate, Pseudomonas aeruginosa BS‐161R. Bioglycerol (2.5%), as a cheap renewable carbon source, attained better rhamnolipid yield, while sodium nitrate appeared to be the preferable nitrogen source. The optimum carbon to nitrogen (C/N) and carbon to iron (C/Fe) ratios achieved were 15 and 28,350, respectively, which favored rhamnolipid production. Physical parameters like pH, temperature, and agitation speed also affected the production of rhamnolipids. Results from shake flask optimization indicated that the concentration of bioglycerol, sodium nitrate, and iron were the most significant factors affecting rhamnolipid production, which was supported by the results of central composite rotatable design. After optimization of the culture conditions, the production of rhamnolipids increased by ninefold from 0.369 to 3.312 g L?1. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

12.
We recently reported that a strain of the non-pathogenic bacterial species Pseudomonas chlororaphis was capable of producing the biosurfactant molecule, rhamnolipids. Previous to this report the organisms known to produce rhamnolipids were almost exclusively pathogens. The newly described P. chlororaphis strain produced rhamnolipids at room temperature in static minimal media, as opposed to previous reports of rhamnolipid production which occurred at elevated temperatures with mechanical agitation. The non-pathogenic nature and energy conserving production conditions make the P. chlororaphis strain an attractive candidate for commercial rhamnolipid production. However, little characterization of molecular/biochemical processes in P. chlororaphis have been reported. In order to achieve a greater understanding of the process by which P. chlororaphis produces rhamnolipids, a survey of proteins differentially expressed during rhamnolipid production was performed. Separation and measurement of the bacteria’s proteome was achieved using Beckman Coulter’s Proteome Lab PF2D packed column-based protein fractionation system. Statistical analysis of the data identified differentially expressed proteins and known orthologues of those proteins were identified using an AB 4700 Proteomics Analyzer mass spectrometer system. A list of proteins differentially expressed by P. chlororaphis strain NRRL B-30761 during rhamnolipid production was generated, and confirmed through a repetition of the entire separation process.Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

13.
14.
Rhamnolipids, produced by Pseudomonas aeruginosa, represent an important group of biosurfactants having various industrial, environmental, and medical applications. Current methods for rhamnolipid quantification involve the use of strong hazardous acids/chemicals, indirect measurement of the concentration of sugar moiety, or require the availability of expensive equipment (HPLC-MS). A safer, easier method that measures the whole rhamnolipid molecules would significantly enhance strain selection, metabolic engineering, and process development for economical rhamnolipid production. A semi-quantitative method was reported earlier to differentiate between the rhamnolipid-producing and non-producing strains using agar plates containing methylene blue and cetyl trimethylammonium bromide (CTAB). In this study, a rapid and simple method for rhamnolipid analysis was developed by systematically investigating the complexation of rhamnolipids and methylene blue, with and without the presence of CTAB. The method relies on measuring the absorbance (at 638 nm) of the rhamnolipid−methylene blue complex that partitions into the chloroform phase. With P. aeruginosa fermentation samples, the applicability of this method was verified by comparison of the analysis results with those obtained from the commonly used anthrone reaction technique.  相似文献   

15.
16.
Being biosurfactants, rhamnolipids create severe foaming when produced in aerobic Pseudomonas aeruginosa fermentation. The necessary reduction of aeration causes oxygen limitation and restricts cell and product concentrations. In this study, we evaluate the new strategy of rhamnolipid production under denitrification conditions. Because hydrocarbons used in earlier aerobic fermentations were not metabolizable in the absence of oxygen, other potential C substrates were examined, including palmitic acid, stearic acid, oleic acid, linoleic acid, glycerol, vegetable oil, and glucose. All were found able to support cell growth under anaerobic denitrification. The growth on the two solid substrates (palmitic acid and stearic acid) was slower but could be enhanced substantially by initial addition of rhamnolipids (0.06 g/L). The effects of different limiting nutrients (N, P, S, Mg, Ca, and Fe) were also investigated. The commonly used N limitation could not be adopted in the denitrifying fermentation because the nitrate added for anaerobic respiration would also be assimilated for growth. P limitation was most effective, giving four- to fivefold higher specific productivity than the conventional N limitation. S limitation was comparable to N limitation; Mg limitation was much poorer. Ca and Fe were ineffective in limiting cell growth. The new strategy was further evaluated in a P-limited fermentation with palmitic acid as the substrate. The fermentation was first carried out under denitrification and later switched to aerobic condition. The specific productivity under denitrification was found to be about one-third that of the aerobic condition. The denitrification process was, however, free of foaming or respiratory limitation. Much higher cell concentrations may be employed to attain higher volumetric productivity and product concentrations, for more economical product recovery and/or purification.  相似文献   

17.
Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.  相似文献   

18.
The high-level production of rhamnolipid biosurfactants is a unique feature of Pseudomonas aeruginosa and is strictly regulated in response to environmental conditions. The final step in rhamnolipid biosynthesis is catalyzed by the rhlAB genes encoding a rhamnosyltransferase. The expression of the cloned rhlAB genes was studied in heterologous hosts, either under the control of the rhlR and rhlI rhamnolipid regulatory elements or under the control of the tac promoter. A recombinant P. fluorescens strain harboring multiple plasmid-encoded copies of the rhamnolipid gene cluster produced rhamnolipids (0.25 g liter(sup-1)) when grown under nitrogen-limiting conditions. The highest yields (0.6 g liter(sup-1)) and productivities (24 mg liter(sup-1) h(sup-1)) were obtained in a recombinant Pseudomonas putida strain, KT2442, harboring promoterless rhlAB genes fused to the tac promoter on a plasmid. Active rhamnosyltransferase was synthesized, but no rhamnolipids were produced, by recombinant Escherichia coli upon induction of rhlAB gene expression.  相似文献   

19.
Rhamnolipids are high‐value effective biosurfactants produced by Pseudomonas aeruginosa. Large‐scale production of rhamnolipids is still challenging especially under free‐cell aerobic conditions in which the highly foaming nature of the culture broth reduces the productivity of the process. Immobilized systems relying on oxygen as electron acceptor have been previously investigated but oxygen transfer limitation presents difficulties for continuous rhamnolipid production. A coupled system using immobilized cells and nitrate instead of oxygen as electron acceptor taking advantage of the ability of P. aeruginosa to perform nitrate respiration was evaluated. This denitrification‐based immobilized approach based on a hollow‐fiber setup eliminated the transfer limitation problems and was found suitable for continuous rhamnolipid production in a period longer than 1,500 h. It completely eliminated the foaming difficulties related to aerobic systems with a comparable specific productivity of 0.017 g/(g dry cells)‐h and allowed easy recovery of rhamnolipids from the cell‐free medium. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 346–351, 2013  相似文献   

20.

In the last few years, ecofriendly malic acid production has received a potential platform for the bio-based chemicals to replace the dependency of fossil based resources. The main goal of this paper is to explore the feasibility of efficient production of malic acid from cost effective alternative renewable byproducts as feedstock. To replace the traditional method of malic acid production from petroleum-based compounds such as maleic acid, the efficiency of fermentation technology for malic acid production using various microorganisms has been improved. To date, glucose is designated as the best substrate for malic acid production. However, few reviews concerning about malic acid production by employing various microbial strains were reported. The current knowledge on the biosynthesis of malic acid has assisted to improve malic acid production using various microbial strains. But, there is still need for the continuous production and replacement of low-cost substrates to increase the yield of malic acid. This review provides an overview about progress, achievements, merits, challenges and future perspectives in malic acid production from cost effective alternative substrates. Thus, malic acid production can be economical using renewable byproducts like crude glycerol by employing appropriate microorganism.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号