首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Process Biochemistry》2014,49(7):1107-1112
Aromatic β-amino ketones/alcohols such as adrenalone play an important role in some stereoselective synthesis of pharmaceuticals. Unfortunately, the transformation of aromatic β-amino ketones to their chiral alcohols has been carried out chemically as no corresponding biocatalyst has been available. Here, a novel carbonyl reductase responsible for the reduction of adrenalone to (R)-(−)-epinephrine was identified and characterized from Kocuria rhizophila. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by ion-exchange column chromatography, hydrophobic chromatography and gel chromatography. The purified enzyme yielded pure (R)-enantiomer product with high activity and utilized NADH as the cofactor. The enzyme had special significance by showing selectivity for many aromatic β-amino ketones/alcohols such as 2-amino-acetophenone, 2-amino-4′-hydroxyacetophenone, isoproterenol and ephedrine. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for adrenalone and NADH were 14.62 μmol/(min mg) protein and 0.189 mM, 11.66 μmol/(min mg) protein and 0.204 mM respectively. These properties ensure the enzyme a promising future for industrial application as a replacement of chemical synthesis of aromatic β-amino chiral alcohols.  相似文献   

2.
《Process Biochemistry》2010,45(6):954-960
A psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica could produce high level (17.2 U/ml) of both extracellular and cell-bound β-galactosidase. The extracellular β-galactosidase in the supernatant of the cell culture of the psychrotolerant yeast G. pullulans 17-1 was purified to homogeneity with a 2.4-fold increase in specific activity as compared to the supernatant by concentration, gel filtration chromatography (Sephadex G-200) and cation-exchange chromatography (CM-Sepharose Fast Flow cation-exchange). The molecular mass of the purified extracellular β-galactosidase was estimated to be 335 kDa. The optimal temperature and pH of the purified β-galactosidase were 50 °C and 4.0, respectively. Km and Vmax values of the purified β-galactosidase for o-nitrophenyl-β-d-galactopyranoside were 3.3 mM and 9.2 μmol/min. Lactose can be converted into glucose and galactose and a large amount of reducing sugar can be released from milk under catalysis of the purified β-galactosidase. The matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectroscopy identified a peptide ALEEYKK which is the conserved motif of the β-galactosidases from other yeasts. The results show that the enzyme may have potential applications in food industry.  相似文献   

3.
We describe herein the design, synthesis and pharmacological evaluation of novel 3-arylamine-imidazo[1,2-a]pyridine derivatives structurally designed as novel symbiotic prototypes presenting analgesic and anti-inflammatory properties. The derivatives obtained were submitted to in vivo assays of nociception, hyperalgesia and inflammation, and to in vitro assays of human PGHS-2 inhibition. These assays allowed the identification of compound LASSBio-1135 (3a) as an anti-inflammatory and analgesic symbiotic prototype. This compound inhibited moderately the human PGHS-2 enzyme activity (IC50 = 18.5 μM) and reverted the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) similarly to p38 MAPK inhibitor SB-203580 (2). Additionally, LASSBio-1135 (3a) presented activity similar to celecoxib (1) regarding the reduction of the carrageenan-induced rat paw edema (33% of inhibition at 100 μmol/kg, po). We also discovered derivatives LASSBio-1140 (3c) and LASSBio-1141 (3e) as analgesic and anti-inflammatory prototypes, which were able to attenuate the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) and reduce the carrageenan-induced paw edema (ED50 = 11.5 μmol/kg (3.3 mg/kg) and 14.5 μmol/kg (4.1 mg/kg), respectively), being both more active than celecoxib (1), despite the fact that their effects involve a different mechanism of action. Additionally, derivative LASSBio-1145 (3j) showed remarkable analgesic (ED50 = 22.7 μmol/kg (8.9 mg/kg)) and anti-inflammatory (ED50 = 8.7 μmol/kg (3.4 mg/kg)) profile in vivo (100 μmol/kg; po), in AcOH-induced abdominal constrictions in mice and carrageenan-induced rat paw edema models, respectively, being a novel orally-active anti-inflammatory drug candidate that acts as a selective PGHS-2 inhibitor (IC50 = 2.8 μM).  相似文献   

4.
A novel β-glucosidase (G-II) was purified to homogeneity from a culture filtrate of the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). G-II specifically cleaved the β-(1  6)-glucosidic linkage at the C-20 site of ginsenoside Rb1 to produce ginsenoside Rd, but did not hydrolyze the other β-d-glucosidic linkages in protopanaxadiol-type ginsenosides. In specificity tests, G-II was active against pNPG and disaccharides such as cellobiose and gentiobiose, but exhibited very low activities against other aryl-glycosides and methyl-α-glycosides. G-II consisted of two identical subunits with a native molecular mass of 180 kDa and a pI of 4.4. The optimal pH of G-II was pH 5.5, and the enzyme was highly stable over a range of pH 5.0–11.0. The optimal temperature was 45 °C, and the enzyme became unstable at temperatures above 40 °C. The Km and Vmax values against pNPG were 0.19 mM and 57.7 μmol/(min mg), respectively. The enzyme was inhibited by Zn2+, Cu2+ (over 50 mM) and SDS (250 mM). However, the inhibition by SDS was partially reversed by 10 mM dithiothreitol. Three oligopeptide fragments obtained after enzymatic digestion of G-II were sequenced by nanoESI-MS/MS. The amino acid sequence homology analysis showed that G-II possessed significant homology with the family 3 β-glucosidases.  相似文献   

5.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

6.
《Aquatic Botany》2004,79(2):111-124
The main aim of this study was to investigate if the charophyte species Chara baltica, Chara canescens (two populations from the Baltic Sea (BS) and the Gulf of Korinth, Greece (GK)), and Lamprothamnium papulosum exhibit different acclimation capacities to irradiance. Growth, photosynthesis and pigment content were examined in the laboratory under six irradiance conditions (35–500 μmol photons m−2 s−1). Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼10 mg fresh weight (FW)) up to 70 μmol photons m−2 s−1 (∼20 mg FW) in C. baltica, from 35 μmol photons m−2 s−1 (∼15 mg FW) up to 380 μmol photons m−2 s−1 (∼145 mg FW) in C. canescens (BS), and up to the highest growth irradiance in algae of L. papulosum (35 μmol: ∼5 mg FW; 500 μmol: ∼20 mg FW). The species were tested for their ability to acclimate to different growth irradiances (Eg) by calculating Pmax (maximum photosynthesis rate at saturating irradiances), α (the efficiency of light utilization at limiting irradiance), and Ek (the light saturation point of photosynthesis, Pmax/α). All species exhibited increasing Pmax with increasing Eg. Whereas both populations of C. canescens increased α with increasing Eg, L. papulosum and C. baltica did not acclimate α at all. Ek, the irradiance at which photosynthesis ceased to be light-limited, was constant for all Chara species within the range of irradiances tested. Chl a/Chl b ratios of all species were constant over the whole range of Eg. Chl a/carotenoid ratios were constant in C. baltica, whereas Chl a/carotenoid ratios in L. papulosum and C. canescens (BS) decreased from 250 and 70 μmol photons m−2 s−1 upwards, respectively. Pigmentation analysis showed that Chl a/carotenoid acclimation was mainly caused by species-specific capacity to raise the content of lutein and carotene (C. canescens (BS), C. canescens (GK)) and xanthophyll cycle pigments (XCP; L. papulosum). The non-photochemical quenching (NPQ) capacities of L. papulosum, C. canescens (BS), and C. canescens (GK) were dependent from preacclimation status of algae, whereas NPQ of C. baltica was independent from growth irradiance.Our results indicate that C. baltica and C. canescens (BS) were light saturated within the chosen irradiances, whereas C. canescens (GK) and L. papulosum did not reach their limits of high-light acclimation. The photosynthetic pigments lutein, α- and β-carotene are suggested to act as photo-protective pigments in L. papulosum and C. canescens.  相似文献   

7.
《Process Biochemistry》2007,42(7):1063-1068
Enantiospecific lipase was purified from Pseudomonas aeruginosa MTCC 5113 and it was used for the hydrolysis of (±)-methyl trans-3(4-methoxyphenyl) glycidate, a key intermediate in the synthesis of cardiovascular drug, diltiazem. Enzyme from broth supernatant was precipitated with acetone and purified by anion exchange and gel filtration chromatography. The purified lipase was a homogenous protein having a molecular weight of 59.4 kDa as determined by SDS-PAGE. Isoelectric point was found to be approximately 5.5 after 2D electrophoresis. This organic solvent tolerant enzyme was found to be active in presence of EDTA, Tween-80 and β-mercaptoethanol whereas sodium dodecyl sulphate and dithiothreitol inhibited its activity. The Km and Vmax of the enzyme were 50 mM and 27.1 μmol/min mg, respectively using p-nitrophenyl palmitate as a substrate. The activity of lipase was confirmed by (±)-MPGM hydrolysis and zymography.  相似文献   

8.
Enzymes in the newly described rumen bacterium, Treponema zioleckii strain kT, capable of digesting Timothy grass fructan, inulin, and sucrose were identified and characterized. Two specific endolevanases and one non-specific β-fructofuranosidase were found in a cell-free extract. The molecular weight of the endolevanases were estimated to be 60 and 36 kDa, whereas that of β-fructofuranosidase, 87 kDa. The former of the specific enzymes was associated with the outer membrane, while the latter and the non-specific β-fructofuranosidase, with the periplasm or cytosol. The Km and Vmax for Timothy grass fructan degradation by endolevanase were 0.27% and 15.75 μM fructose equivalents × mg protein?1 × min?1, those for sucrose and inulin digestion by β-fructofuranosidase were 1.35 × 10?3 M and 1.73 μM hexoses × mg protein?1 × min?1 and 1.77% and 1.83 μM hexoses × mg protein?1 × min?1, respectively.  相似文献   

9.
《Journal of Asia》2014,17(3):459-466
During our screening program for agrochemicals from Chinese medicinal herbs and wild plants, the essential oil of Litsea cubeba fruits was found to possess strong contact toxicity against the cigarette beetle Lasioderma serricorne adults and the booklouse Liposcelis bostrychophila, with LD50 values of 27.33 μg/adult and 71.56 μg/cm2, respectively, and also showed strong fumigant toxicity against the two stored product insects with LC50 values of 22.97 and 0.73 mg/L, respectively. The essential oil obtained by hydrodistillation was investigated by GC MS. The main components of the essential oil were identified to be E-citral (geranial) (27.49%), Z-citral (neral) (23.57%) and d-limonene (18.82%) followed by β-thujene (3.34%), β-pinene (2.85%), α-pinene (2.57%), 6-methyl-5-hepten-2-one (2.40%) and linalool (2.36%). Citral (Z/E-citral), d-limonene, β-pinene, α-pinene and linalool were separated and purified by silica gel column chromatography and preparative thin layer chromatography, and further identified by means of physicochemical and spectrometric analysis. Citral and linalool showed strong contact toxicity against L. serricorne and L. bostrychophila (LD50 = 11.76, 12.74 μg/adult and 20.15, 99.97 μg/cm2, respectively) and fumigant toxicity against L. serricorne and L. bostrychophila (16.54, 18.04 mg/L air and 0.14, 0.71 mg/L air, respectively). Otherwise, citral, d-limonene and linalool were strongly repellent against the cigarette beetle L. serricorne as the essential oil whereas β-pinene and α-pinene exhibited weaker repellency against the cigarette beetle compared with the positive control, DEET. Moreover, except α-pinene and linalool, the other three compounds as well as the essential oil exhibited comparable repellency against the booklouse relative to DEET.  相似文献   

10.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

11.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. P. purpurogenum produced one of the highest levels of EG (5.6 U mg-protein?1) with rice straw and corn steep powder as carbon and nitrogen sources, respectively. The extracellular EG was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The purified EG was a monomeric protein with a molecular weight of 37 kDa and showed broad substrate specificity with maximum activity towards lichenan. P. purpurogenum EG showed t1/2 value of 2 h at 70 °C and catalytic efficiency of 118 ml mg?1 s?1, one of the highest levels seen for EG-producing microorganisms. Although EGs have been reported elsewhere, the high catalytic efficiency and thermostability distinguish P. purpurogenum EG.  相似文献   

12.
《Process Biochemistry》2014,49(1):77-83
Endo-xylanases play a key role in the hydrolysis of xylan and recently they have attracted much attention due to their potential applications on the biofuel and paper industries. We isolated a Pseudozyma brasiliensis sp. nov. strain from the intestinal tract of Chrysomelidae larvae that parasitize sugarcane roots. This basidiomycetous yeast produces a xylanase designated PbXynA which was purified and characterized. The molecular weight of PbXynA is 24 kDa, it belongs to the GH11 family and its optimum pH and optimum temperature are 4.0 and 55 °C, respectively. PbXynA has as secondary structure predominantly β-sheets and sigmoidal kinetic behavior with elevated speed conversion from substrate-to-products (Vmax = 2792.0 μmol product/min/mg protein). It is highly activated by bivalent cations such as Ca2+, however in the presence of Cu2+ xylanase activity was inhibited. It has a high specific activity and produces xylooligosaccharides that have a variety of industrial applications, indicating PbXynA has a great biotechnological potential.  相似文献   

13.
Programed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. This adaptive plant immune response was quantitatively assessed against Tomato Mosaic Virus infection by the following physiological markers; Chlorophyll-a (mg/g), Chlorophyll-b (mg/g), total protein (mg/g), hydrogen peroxide H2O2 (μmol/100 mg), DNA (μg/100 mg), RNA (μg/100 mg), Salicylic acid (μg/g), and Comet Assays. Parameters were assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (⩽1.095 μmol/100 mg) and (⩽3.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = −0.930, P < 0.01) where the P value was <0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus.  相似文献   

14.
《Process Biochemistry》2010,45(6):897-903
G-I, a highly selective β-glucosidase, was purified from phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). G-I was a monomer with native molecular weight of 85 kDa and pI value of 4.2. The maximal activity to p-nitrophenyl-β-d-glucopyranoside (pNPG) occurred at pH 6.0 and 45 °C at which the Km against pNPG was 0.18 mM and Vmax was 46.7 μmol nitrophenol/min/mg. G-I was highly stable within pH 4.0–11.0 and below 40 °C. It was inhibited by Co2+, Cu2+ and Zn2+ (50 mM), but showed resistance to sodium dodecyl sulfonate (SDS, 250 mM). G-I was highly active against β-linked disaccharide cellobiose, gentiobiose and sophorose, but exhibited very low activities against other aryl-glycosides, methyl-α-glycosides and disaccharides trehalose and sucrose. Moreover, G-I specifically hydrolyzed β-(1  6)-glucosidic linkage at the C-20 site of ginsenoside Rb1 to produce ginsenoside Rd, without attack on other β-d-glucosidic linkages. The oligopeptide fragments of G-I were sequenced by nanoESI-MS/MS and showed similarity to the sequences from the glycoside hydrolase family 3. G-I is different to G-II (a glycosidase previously purified from the same fungus) in composition and molecular weight. It shows more stable and higher selectivity than G-II.  相似文献   

15.
Integral membrane proteins PEPT1 and PEPT2 are essential for reabsorbing almost all hydrolysed or filtered di- and tripeptides alongside a wide range of peptidomimetic drugs in the kidney. The aim of this study was to investigate the potential use of the fluorophore-conjugated dipeptide β-Ala-Lys (AMCA) as a biosensor for measuring peptide transport activity in brush border membrane vesicles isolated from the outer cortex (BBMV-OC) and outer medulla (BBMV-OM) (representing PEPT1 and PEPT2 respectively). The vesicles were isolated using a dual magnesium precipitation and centrifugation technique. Intravesicular fluorescence accumulation was measured after incubating extra-vesicular media at pH 6.6 and different concentrations of β-Ala-Lys (AMCA) with vesicles pre-equilibrated at pH 7.4. Both BBMV-OC and BMMV-OM showed accumulation of an intravesicular fluorescence signal after 20 min incubation. Changing the extra-vesicular pH to 7.4 caused a significant reduction in the β-Ala-Lys (AMCA) uptake into BBMV-OC at concentrations > 100 μM. When different concentrations of dipeptide, Gly-Gln was added, there was a significant inhibition of 100 μM β-Ala-Lys (AMCA) uptake into BBMV-OC and BMMV-OM, reaching 69% and 80%, respectively. Kinetic analysis of β-Ala-Lys (AMCA) at 20 min showed that the Km and Vmax were 783.7 ± 115.7 μM and 2191.2 ± 133.9 ΔF/min/mg for BBMV-OC, while BMMV-OM showed significantly higher affinity, but lower capacity at Km = 93.6 ± 21.9 μM and Vmax = 935.8 ± 50.2 ΔF/min/mg. These findings demonstrate the applicability of β-Ala-Lys (AMCA) as a biosensor to measure the transport activity of the renal-type PEPT1 and PEPT2 in BBMV-OC and BMMV-OM respectively.  相似文献   

16.
The action of 10 and 20 mM Ca against harmful Cd effect on PS2 complex isolated from leaves of Phaseolus coccineus L. cv. Pi?kny Ja? was studied. The changes in fast chlorophyll a fluorescence induction kinetics and protein composition of PS2 complex were the symptoms of Cd toxicity and Ca protection of PS2 complex. Calcium applied at 10 mM concentration prevented F0 reduction caused by the presence of 250–1000 μM Cd in the incubation mixture, but that of (the variable chlorophyll a fluorescence) Fv, Fm, Fv/F0, and Fv/Fm only at 250 μM Cd. Ca concentration doubling in the incubation mixture resulted in complete overcoming the toxicity of 250–1000 μM Cd to Fv and Fm. However, the protection of Fv/F0 and the photochemical efficiency of PS2 (Fv/Fm) from 1000 μM Cd was only partial even at 20 mM Ca. A protective effect of 10 mM Ca on D1, D2 and 17 kDa proteins was found in PS2 complex exposed to 250 μM Cd, and on 43 kDa protein in the complex treated with 500 μM Cd. However, 20 mM Ca counteracted the toxicity of 500 μM Cd to the 43, 47 and 17 kDa proteins, as well as the harmful effect of 1000 μM Cd on 47 and 17 kDa ones.  相似文献   

17.
A novel neutral aminopeptidase (NAP-2) was found exclusively in the rat central nervous system (CNS). It was separated from the ubiquitous puromycin-sensitive aminopeptidase (PSA) and the neuron-specific aminopeptidase (NAP) by an automated FPLC-aminopeptidase analyzer. The activity of the neuronal aminopeptidase enriched in the synaptosomes is different from NAP and PSA in distribution and during brain development. The enzyme was purified 2230-fold to apparent homogeneity from rat brain cytosol with 4% recovery by ammonium sulfate fractionation, followed by column chromatography successively on Phenyl-Sepharose, Q-Sepharose, Sephadex G-200, and Mono Q. The single-chain enzyme with a molecular mass of 110 kDa has an optimal pH of 7.0 and a pI of 5.6. It splits β-naphthylamides of amino acid with aliphatic, polar uncharged, positively charged, and aromatic side chain. Leucyl β-naphthylamide (Leu βNA) is the best substrate with the highest hydrolytic coefficiency followed by Met βNA = Arg βNA = Lys βNA > Ala βNA > Tyr βNA > Phe βNA. The cysteine-, metallo-, glyco-aminopeptidase releases the N-terminal Tyr from Leu-enkephalin with a Km 82 μM and a kcat of 1.08 s−1, and Met-enkephalin with a Km of 106 μM and a kcat of 2.6 s−1. The puromycin-sensitive enzyme is most susceptible to amastatin with an IC50 of 0.05 μM. The data indicate that the enzyme is a new type of NAP found in rodent. Its possible function in neuron growth, neurodegeneration, and carcinomas is discussed.  相似文献   

18.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

19.
It has been shown that fraction D6 from Pleurotus pulmonarius has the potential to inhibit ACE. After this discovery, additional studies were conducted to obtain peptides from that fraction, as ACE inhibitors. By size exclusion chromatography, single peak was resolved and termed as Psec. The IC50 of Psec was assessed to be 4.50 μg/mL, which was 2.5 times lower than that of D6. When Psec was resolved by SDS-PAGE, three bands with estimated molecular weight of 63 kDa, 55 kDa and 11 kDa were observed. The protein bands were subjected to MALDI-Tof MS/MS for protein identification. By using the BIOPEP database for predicting in silico digestion of gastrointestinal (GI) enzymes, four stable tripeptides with ACE inhibitor potential resulting from GI enzyme digestion were identified, namely GVR, VVR, NPR, and VVL. The IC50 was estimated to be 55 μg/mL, 93 μg/mL, 110 μg/mL and >250 μg/mL individually. Based on a Lineweaver-Burk plot, tripeptide GVR was determined to be a competitive inhibitor and this was confirmed by molecular docking analysis. At 100 mg/kg of body weight (bw), the tripeptide GVR reduced SBP 33.5 mm Hg in SHRs. The results suggested that this tripeptide is potentially beneficial as an antihypertensive agent.  相似文献   

20.
Three series of salicylanilides, esters of N-phenylsalicylamides and 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides, in total thirty target compounds were synthesized and characterized. The compounds were evaluated against seven bacterial and three mycobacterial strains. The antimicrobial activities of some compounds were comparable or higher than the standards ampicillin, ciprofloxacin or isoniazid. Derivatives 3f demonstrated high biological activity against Staphylococcus aureus (?0.03 μmol/L), Mycobacterium marinum (?0.40 μmol/L) and Mycobacterium kansasii (1.58 μmol/L), 3g shows activity against Clostridium perfringens (?0.03 μmol/L) and Bacillus cereus (0.09 μmol/L), 3h against Pasteurella multocida (?0.03 μmol/L) and M. kansasii (?0.43 μmol/L), 3i against methicillin-resistant S. aureus and B. cereus (?0.03 μmol/L). The structure–activity relationships are discussed for all the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号