首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Enzyme immobilization on magnetic nanoparticles (MNPs) has been a field of intense studies in biotechnology during the past decade. The present study suggests MNPs negatively charged by docusate sodium salt (AOT) as a support for pectinase immobilization. AOT is a biocompatible anionic surfactant which can stabilize MNPs. Electrostatic adsorption can occur between enzyme with positive charge and oppositely charged surface of MNPs (ca. 100 nm). The effect of three factors, i.e. initial enzyme concentration, aqueous pH and AOT concentration in different levels was investigated on pectinase immobilization. Maximum specific activity (1.98 U/mg enzyme) of immobilized pectinase and maximum enzyme loading of 610.5 mg enzyme/g support was attained through the experiments. Initial enzyme concentration is significantly important on both loading and activity of immobilized enzyme, while pH and AOT concentration only affect the amount of immobilized enzyme. Immobilized enzyme on MNPs was recovered easily through magnetic separation. At near pH of immobilization, protein leakage in reusability of immobilized enzyme was low and activity loss was only 10–20% after six cycles. Since pH is associated with immobilization by electrostatic adsorption, the medium pH was changed to improve the release of protein from the support, as well. MNPs properties were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, and Dynamic Light Scattering (DLS) analysis.  相似文献   

2.
《Process Biochemistry》2007,42(6):1021-1027
Candida rugosa lipase (CRL) was immobilized on Amberlite XAD 7 and the advantage of immobilization under the best reaction conditions in achieving high activity and enantioselectivity was shown for the hydrolysis of racemic Naproxen methyl ester. The performance of CRL was found to be better when the enzyme was immobilized at the temperature and pH values where higher conversion and enantioselectivity were obtained. The effects of immobilized lipase load, temperature, pH and substrate concentration on the conversion and enantioselectivity toward S-Naproxen production in aqueous phase/isooctane biphasic batch system were also evaluated. The increase in immobilized lipase load in 320–800 U/mL range increased the conversion of the substrate and enantioselectivity for S-Naproxen. The kinetic resolution of racemic Naproxen methyl ester conducted at the temperatures of 40, 45 and 50 °C and at the pH values of 4, 6, 7.5 and 9 resulted in the highest conversion and enantioselectivity at 45 °C and pH 6. Higher concentration of racemic Naproxen methyl ester than 10 mg/mL decreased both the conversion and enantioselectivity. CRL, which was immobilized at the temperature and pH values where the enzyme was more enantioselective, was successfully used in three successive batch runs each of 180 h. The highest enantiomeric ratio achieved in the S-Naproxen production was 174.2 with the conversion of 49%.  相似文献   

3.
The immobilization of enzymes in inorganic materials has been widely used because it can produce an enhancement of the catalytic stability and enzymatic activity. In this article, the effect of the immobilization of iso-1-cytochrome c (CYC-Sc) from Saccharomyces cerevisiae and chloroperoxidase (CPO) from Caldariomyces fumago on the enzyme stability and catalytic oxidation of styrene was studied. The immobilization was carried out in three silica nanostructured supports with different pore size MCM-41 (3.3 nm), SBA-15 (6.4 nm) and MCF (12.1 nm). The adsorption parameters and leaching degree of immobilized enzymes were determined. Catalytic parameters of immobilized and free enzymes were determined at different temperatures (20–60 °C) and in different acetonitrile/water mixtures (15–85% of acetonitrile). The results show that there is low leaching of the enzymes in the three supports assayed and the adsorption capacity (qmax) was higher as the pore size of the support increased. The pore size also produces the enhancement of peroxidase activities on the styrene oxidation. Thus, CPO adsorption into SBA-15 and MCF showed remarkable thermal and solvent stabilities at 40 °C showing a total turnover numbers of 48,000 and 54,000 times higher than free CPO, respectively. The enhancement of activity and stability doubtless is interesting for the potential industrial use of peroxidases.  相似文献   

4.
Candida rugosa lipases (CRLs) immobilized by physical adsorption, cross-linking and covalent binding methods on a MSU-H type mesoporous silica previously modified organically by different strategies, respectively, were examined as biocatalysts for esterification of conjugated linoleic acid (CLA) and ethanol in nonaqueous medium. MSU-H silica was modified by nonionic surfactant of triblock copolymer Pluronic P123, amino-functionalization and glutaraldehyde-grafting and confirmed by FT-IR analysis. Interaction mechanisms of CRLs and supports involve covalent and non-covalent interactions including electrostatic repulsion and hydrophobic interaction at pH 7. The immobilized CRLs containing surfactant were prepared by cross-linking via entrapping CRL aggregates inside the pores of silicas. The surfactant located inside the silicas could interfacially activate the immobilized CRLs and favored catalytic esterification. The biocatalyst containing 38 wt.% of surfactant afforded 1111.1 U/mg of specific activity about eight times higher than soluble CRL, and maximal 56.7% of total CLA esterification with 96.5% of 9c, 11t-CLA isomer esterification degree. The immobilized-CRL with 64.5 mg/g of loading amount of protein exhibited maximal hydrolytic activity of 2945.3 U/g-support for grafting glutaraldehyde. This derivative showed a high level of esterification activity and operational stability and remained 43.2–46.9% of total esterification for 32 h consecutive four runs.  相似文献   

5.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

6.
The present article describes formation of excipient-CRL complex from water soluble calix[4]arene derivative (3 as excipient) and Candida rugosa lipase (CRL), which is proposed as a reusable form of enzyme that is free from steric and diffusion limitations associated with those enzymes immobilized onto porous solid supports. The excipient-CRL could completely hydrolyze 50 mM p-nitrophenyl palmitate (p-NPP) in Tris–HCl buffer at a wide range of temperatures, i.e. 30–80 °C. It is stable under stirred conditions and could be reused multiple times without loss of enzyme activity. It was observed that excipient-CRL complex shows a significant effect on the enzyme activity with an enhancement in thermal stability, while pH and temperature affect the activity of excipient-CRL as well as free CRL. Consequently, the excipient-CRL was found more active than free CRL for the hydrolysis of p-NPP in respect of its reusability.  相似文献   

7.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

8.
Nitrate reductase (NR) is employed for fabrication of nitrate sensing devices in which the enzyme in immobilized form is used to catalyze the conversion of nitrate to nitrite in the presence of a suitable cofactor. So far, instability of immobilized NR due to the use of inappropriate immobilization matrices has limited the practical applications of these devices. Present study is an attempt to improve the kinetic properties and stability of NR using nanoscale iron oxide (nFe3O4) and zinc oxide (nZnO) particles. The desired nanoparticles were synthesized, surface functionalized, characterized and affixed onto the epoxy resin to yield two nanocomposite supports (epoxy/nFe3O4 and epoxy/nZnO) for immobilizing NR. Epoxy/nFe3O4 and epoxy/nZnO support could load as much as 35.8 ± 0.01 and 33.20 ± 0.01 μg/cm2 of NR with retention of about 93.72 ± 0.50 and 84.81 ± 0.80% of its initial activity respectively. Changes in surface morphology and chemical bonding structure of both the nanocomposite supports after addition of NR were confirmed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Optimum working conditions of pH, temperature and substrate concentration were ascertained for free as well as immobilized NR preparations. Further, storage stability at 4 °C and thermal stability between 25–50 °C were determined for all the NR preparations. Analytical applications of immobilized NR for determination of soil and water nitrates along with reusability data has been included to make sure the usefulness of the procedure.  相似文献   

9.
Pectinesterase isolated from Malatya apricot pulp was covalently immobilized onto glutaraldehyde-containing amino group functionalized porous glass beads surface by chemical immobilization at pH 8.0. The amount of covalently bound apricot PE was found 1.721 mg/g glass support. The properties of immobilized enzyme were investigated and compared to those of free enzyme. The effect of various parameters such as pH, temperature, activation energy, heat and storage stability on immobilized enzyme were investigated. Optimum pH and temperature were determined to be 8.0 and 50 °C, respectively. The immobilized PE exhibited better thermostability than the free one. Kinetic parameters of the immobilized enzyme (Km and Vmax values) were also evaluated. The Km was 0.71 mM and the Vmax was 0.64 μmol min?1 mg?1. No drastic change was observed in the Km and Vmax values. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. Thermal and storage stability experiments were also carried out. It was observed that the immobilized enzyme had longer storage stability and retained 50% of its initial activity during 30 days.  相似文献   

10.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

11.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

12.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

13.
《Process Biochemistry》2010,45(2):259-263
The para-nitrobenzyl esterase (PNBE), which was encoded by pnbA gene from Bacillus subtilis, was immobilized on amino-functionalized magnetic supports as cross-linked enzyme aggregates (CLEA). The maximum amount of PNBE-CLEA immobilized on the magnetic beads using glutaraldehyde as a coupling agent was 31.4 mg/g of beads with a 78% activity recovery after the immobilization. The performance of immobilized PNBE-CLEA was evaluated under various conditions. As compared to its free form, the optimal pH and temperature of PNBE-CLEA were 1 unit (pH 8.0) and 5 °C higher (45 °C), respectively. Under different temperature settings, the residual enzyme activity was highest for the PNBE-CLEA, followed by covalently fixed PNBE without further cross-linking and the free PNBE. During 40 days of storage pried, the PNBE-CLEA maintained more than 90% of its initial activity while the free PNBE maintained about 60% under the same condition. PNBE-CLEA also retained more than 80% activity after 30 reuses with 30 min of each reaction time, indicating stable reusability under aqueous medium.  相似文献   

14.
Co–B/SiO2/NH2 magnetic nanoparticles (NPs) were prepared from a silica shell-coated Co–B core using the Stöber method and amine-modification on the surface. Glucose oxidase (GOD) was covalently immobilized on the surface of Co–B/SiO2/NH2 NPs using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) as an activating agent. The magnetic NPs characteristics, such as the synthesis of Co–B/SiO2/NH2 NPs, effect of pH, temperature, and concentration of buffer for enzyme immobilization, were investigated. The optimal reaction conditions for immobilization were determined to be 0.1 M of phosphate buffer solution, pH 7.0, and 5 °C. In the case of immobilized GOD without d-glucose and with 0.1 M of d-glucose for blocking, 22.98 U/g and 24.83 U/g of their original activity were retained after 7 reuses, respectively.  相似文献   

15.
Carbonic anhydrase (CA) catalyzes the reversible reaction of hydration of CO2 to bicarbonate and the dehydration of bicarbonate back to CO2. Sequestration of CO2 from industrial processes or breathing air may require a large amount of highly active and stable CA. Therefore, the objectives of the present study were to purify large amounts of CA from a cheap and easily accessible source of the enzyme and to characterize the enzymatic and kinetic properties of soluble and immobilized enzyme. We recovered 80% of pure enzyme with a specific activity of 4870 EU/mg protein in a single step using sheep blood lysates from slaughter house waste products and CA specific inhibitor affinity chromatography. Since affinity pure CA showed both anhydrase and esterase activities, we measured the esterase activities for enzymology. The Michaelis–Menten constant, KM, pH optimum, activation energy, and thermal stability of soluble enzymes were 8 × 10?2 M, 7.3 pH, 7.3 kcal/mol and 70 °C, respectively.The immobilization of the enzyme to Affigel-10 was very efficient and 83% of purified enzyme was immobilized. The immobilized enzyme showed a KM of 5 × 10?2 M and activation energy of 8.9 kcal/mol, suggesting a better preference of substrate for immobilized enzyme in comparison to soluble enzyme. In contrast to soluble enzyme, immobilized enzyme showed relatively higher activity at pH 6–8. From these results, we concluded that a shift in pH profile toward acidic pH is due to modification of lysine residues involved in the immobilization process. The immobilized enzyme was stable at higher temperatures and showed highest activity at 80 °C. The activity of immobilized enzyme in a flow reactor at 0.5–2.2 ml/min flow rate was unaffected. Collectively, results from the present study suggested the application of blood lysate waste from animal slaughterhouses for purification of homogeneous enzyme for CO2 capture in a flow reactor.  相似文献   

16.
Bovine liver catalase was covalently immobilized onto Eupergit C. Optimum conditions of immobilization: pH, buffer concentration, temperature, coupling time and initial catalase amount per gram of carrier were determined as 7.5, 1.0 M, 25 °C, 24 h and 4.0 mg/g, respectively. Vmax and Km were determined as 1.4(±0.2) × 105 U/mg protein and 28.6 ± 3.6 mM, respectively, for free catalase, and as 3.7(±0.4) × 103 U/mg protein and 95.9 ± 0.6 mM, respectively, for immobilized catalase. The thermal stability of the immobilized catalase in terms of half-life time (29.1 h) was comparably higher than that of the free catalase (9.0 h) at 40 °C. Comparison of storage stabilities showed that the free catalase completely lost its activity at the end of 11 days both at room temperature and 5 °C. However, immobilized catalase retained 68% of its initial activity when stored at room temperature and 79% of its initial activity when stored at 5 °C at the end of 28 days. The highest reuse number of immobilized catalase was 22 cycles of batch operation when 40 mg of immobilized catalase loaded into the reactor retaining about 50% of its original activity. In the plug flow type reactor, the longest operation time was found as 82 min at a substrate flow rate of 2.3 mL/min when the remaining activity of 40 mg immobilized catalase was about 50% of its original activity. The resulting immobilized catalase onto Eupergit C has good reusability, thermal stability and long-term storage stability.  相似文献   

17.
This work aims to produce 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) from ascorbic acid and β-cyclodextrin with immobilized α-cyclodextrin glucanotransferase (α-CGTase) from recombinant Escherichia coli. Molecular sieve (SBA-15) was used as an adsorbent, and sodium alginate was used as a carrier, and glutaraldehyde (GA) was used as a cross-linker. The effects of several key variables on α-CGTase immobilization were examined, and optimal immobilization conditions were determined as the following: glutaraldehyde (GA, cross-linker) 0.01% (v/v), SBA-15 (adsorbent) 2 g/L, CaCl2 3 g/L, sodium alginate 20 g/L, adsorption time 3 h, and immobilization time 1 h. In comparison with free α-CGTase, immobilized α-CGTase had a similar optimal pH (5.5) and a higher optimal temperature (45 °C). The continuous production of AA-2G from ascorbic acid and β-cyclodextrin in the presence of immobilized α-CGTase was carried out, and the highest AA-2G production reached 21 g/L, which was 2-fold of that with free α-CGTase. The immobilization procedure developed here was efficient for α-CGTase immobilization, which was proved to be a prospective approach for the enzymatic production of AA-2G.  相似文献   

18.
Hydrophobic silica aerogels modified with methyl group were applied as support to immobilize Candida rugosa lipase (CRL). At the adsorption process, different alcohols were used to intensify the immobilization of CRL. The results showed that n-butanol wetting the hydrophobic support prior to contacting with enzyme solution could promote lipase activity, but the adsorption quantity onto the support decreased. Based on this, a novel immobilization method was proposed: the support contacted with enzyme solution without any alcohols, and then the immobilized enzymes were activated by 90% (V) n-butanol solution. The experimental results showed that this method could keep high adsorption quantity (413.0 mg protein/g support) and increase the lipase specific activity by more than 50%. To improve the stability of immobilized lipase, the support after adsorption was contacted with n-octane to form an oil layer covering the immobilized lipases, thus the leakage can be decreased from over 30–4% within 24 h. By utilizing proper cosolvents, a high enzyme activity and loading capacity as well as little loss of lipase was achieved without covalent linkage between the lipase and the support. This is known to be an excellent result for immobilization achieved by physical adsorption only.  相似文献   

19.
This paper demonstrates, for the first time, the use of resorcinol–formaldehyde carbon gels (RFCs) as enzyme carriers. The immobilization behavior of Bacillus licheniformis serine protease in RFCs of different pore characters was investigated. RFCs derived with (RF1) and without (RF2) cationic surfactant (trimethylstearylammonium chloride; C18) resulted in predominantly microporous, and mesoporous characters, respectively. It was found that support pore size and volume were key parameters in determining immobilized enzyme loading, specific activity, and stability. RF2, with higher mesopore volume (Vmes: RF1 = 0.21 cm3/g; RF2 = 0.81 cm3/g) and mesopore size radius (RF1 = 1.7–3.8 nm; RF2 = 7.01 nm), accommodated approximately fourfold more enzyme than RF1. Serine protease loading in RF2 could reach as high as 21.05 unit/g support. In addition, RF2 was found to be a better support in terms of serine protease operation and storage stability. Suitable mesopore size likely helped preventing immobilized enzyme from structural denaturation due to external forces and heat. However, immobilized enzyme in RF1 gave 12.8-fold higher specific activity than in RF2, and 2.1-fold higher than soluble enzyme. Enzyme leaching was found to be problematic in both supports, nonetheless, higher desorption was observed in RF2. Enhancement of interaction between serine protease and RFCs as well as pore size adjustment will be necessary for repeated use of the enzyme and further process development.  相似文献   

20.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号