首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Structured phenolic lipids (PLs) were obtained by lipase-catalyzed transesterification of flaxseed oil, in a solvent-free system (SFS), with selected phenolic acids, including hydroxylated and/or methoxylated derivatives of cinnamic, phenyl acetic and benzoic acids. A bioconversion yield of 65% was obtained for the transesterification of flaxseed oil with 3,4-dihydroxyphenyl acetic acid (DHPA). However, the effect of the chemical structure of phenolic acids on the transesterification of flaxseed oil in SFS was of less magnitude as compared to that in organic solvent system (OSS). Using DHPA, the APCI-MS analysis confirmed the synthesis of monolinolenyl, dilinolenyl, linoleyl linolenyl and oleyl linolenyl dihydroxyphenyl acetates as phenolic lipids. A significant increase in the enzymatic activity from 200 to 270 nmol of PLs/g solid enzyme/min was obtained upon the addition of the non-ionic surfactant Span 65. However, upon the addition of the anionic surfactant, sodium bis-2-ethylhexyl sulfosuccinate (AOT), and the cationic one, hexadecyltrimethylammonium bromide (CTAB), the enzymatic activity was decreased slightly from 200 to 192 and 190 nmol of PLs/g solid enzyme/min, respectively. The results also showed that the increase in DHPA concentration from 20 to 60 mM resulted in a significant increase in the volumetric productivity (P(V)) from 1.61 to 4.74 mg PLs per mL reaction mixture per day.  相似文献   

2.
New resveratrol (RES) analogs were developed by replacing the aromatic ‘core’ of our initial naphthalene-based RES analogs with pseudo-heterocyclic (salicylaldoxime) or heterocyclic (benzofuran, quinoline, and benzothiazole) scaffolds. The resulting analogs were tested for their antiproliferative and vasorelaxing effect, two typical properties shown by RES. Some of the new compounds confirmed strong antiproliferative activities, comparable to that previously found with the most active naphthalene-based analog. In particular, 3-(3,5-dihydroxyphenyl)-7-hydroxyquinoline exhibited the most potent antiproliferative effect (IC50 = 17.4 μM). In vascular assays, the highest levels of potency (pIC50 = 4.92) and efficacy (Emax = 88.2%) were obtained with 2-(3,5-dihydroxyphenyl)-6-hydroxybenzothiazole. A conformational analysis of these compounds indicated that the antiproliferative activity on MDA-MB-231 cancer cells can be correlated to a common sterical profile of the most active compounds and, in particular, to the spatial arrangement of the three phenolic groups. Furthermore, the vasorelaxing properties showed a good correlation with the electronic properties measured through the electrostatic molecular potential (ESP).  相似文献   

3.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

4.
《Process Biochemistry》2014,49(1):69-76
Alkaline pectate lyases (PLs) play an important role in mild and eco-friendly bioscouring pretreatment processes in the textile industry. However, to date, only a few PLs can be applied in industrial-scale production, and many of them exhibit high production cost, low activity, and/or do not meet the treatment requirements. In this study, an alkaline PL gene was cloned from the metagenomic DNA of alkaline environment soils. The gene pelB consisted of 1263 nucleotides and encoded a mature protein (PelB) of 399 amino acids, which was expressed in Escherichia coli. The maximum catalytic activity of the enzyme exhibited a bimodal distribution at pH 8.1 and 9.8 and an optimal temperature of 55 °C. The Km and Vmax values of PelB were 1.78 g/L and 1084.8 μmol/(L min) at 45 °C, respectively. Substrate specificity analysis demonstrated the high cleavage capability of PelB on a broad range of substrates of natural methylated pectin. Based on the degradation products, PelB was considered to be an endo-acting lyase. Using high-cell-density cultivation in 7-L bioreactor, the highest PL activity (1816.2 U/mL) was achieved. Thus, the recombinant PelB, with promising properties for use in bioscouring in the textile pretreatment process, should be a potential enzyme for industrial applications.  相似文献   

5.
Enzymatic synthesis of palm oil esters (POE) was carried out via alcoholysis of palm oil (PO) and oleyl alcohol (OA) catalyzed by Lipozyme TL IM. The optimum reaction conditions were: temperature: 60 °C; enzyme load: 24.7 wt%; substrate ratio: 1:3 (PO/OA), impeller speed: 275 rpm and reaction time: 3 h. At the optimum condition, the conversion of POE was 79.54%. Reusability study showed that Lipozyme TL IM could be used for 5 cycles with conversion above 50%. The alcoholysis reaction kinetic follows the Ping-Pong Bi-Bi mechanism characterized by the Vmax, Km(PO), and Km(OA) values of 32.7 mmol/min, 0.3147 mmol/ml and 0.9483 mmol/ml, respectively. The relationship between initial reaction rate and temperature was also established based on the Arrhenius law.  相似文献   

6.
This study examined the effect of different elicitors (seven, different concentrations) and environmental factors (water activity (aw), pH) on taxol production by strains of two endophytic fungi, Paraconiothyrium variabile and Epicoccum nigrum, isolated from temperate yew trees. A defined liquid broth medium was modified with elicitors, solute aw depressors at different pH values. For P. variabile, the best elicitor was salicylic acid at 50 mg/l which gave a taxol yield of 14.7 ± 4.8 μg/l. The study of synergistic effects between elicitor, aw and pH on taxol production showed that the highest yield of taxol (68.9 ± 11.9 μg/l) was produced under modified ionic stress of 0.98 aw (KCl) at pH 5 when supplemented with 20 mg/l of salicylic acid. For E. nigrum, serine was the best elicitor which increased yield significantly (29.6 fold) when KCL was used as the aw depressor (0.98 aw) at pH 5.0 with 30 mg/l of serine. The maximum taxol yield produced by E. nigrum was 57.1 ± 11.8 μg/l. Surface response models were used to build contour maps to determine the conditions for maximum and marginal conditions for taxol yield in relation to the best elicitor and aw, and the best pH for the first time. This will be beneficial for identifying key parameters for improvement of taxol yields by endophytic fungi.  相似文献   

7.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

8.
The effect of aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor was investigated. B. trispora formed hyphae, zygophores and zygospores during the fermentation. The zygospores were the morphological form responsible for β-carotene production. Both aeration and agitation significantly affected β-carotene concentration, productivity, biomass and the volumetric mass transfer coefficient (KLa). The highest β-carotene concentration (1.5 kg m−3) and the highest productivity (0.08 kg m−3 per day) were obtained at low impeller speed (150 rpm) and high aeration rate (1.5 vvm). Also, maximum productivity (0.08 kg m−3 per day) and biomass dry weight (26.4 kg m−3) were achieved at high agitation speed (500 rpm) and moderate aeration rate (1.0 vvm). Conversely, the highest value of KLa (0.33 s−1) was observed at high agitation speed (500 rpm) and high aeration rate (1.5 vvm). The experiments were arranged according to a central composite statistical design. Response surface methodology was used to describe the effect of impeller speed and aeration rate on the most important fermentation parameters. In all cases, the fit of the model was found to be good. All fermentation parameters (except biomass concentration) were strongly affected by the interactions among the operation variables. β-Carotene concentration and productivity were significantly influenced by the aeration, agitation, and by the positive or negative quadratic effect of the aeration rate. Biomass concentration was principally related to the aeration rate, agitation speed, and the positive or negative quadratic effect of the impeller speed and aeration rate, respectively. Finally, the volumetric mass transfer coefficient was characterized by the significant effect of the agitation speed, while the aeration rate had a small effect on KLa.  相似文献   

9.
The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B = ? 0.18; ? 0.20 and ? 0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed “membranes as metabolic pacemakers”. Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B = ? 0.17; ? 0.13 and ? 0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.  相似文献   

10.
11.
With the aim to produce cellulases and to study the effect of mechanical agitation, a 35 L draft-tube airlift bioreactor equipped with a mechanical impeller was developed and validated to grow Trichoderma reesei RUT-C30 in a cellulose culture medium with lactose and lactobionic acid as fed batch. Cultures carried out without mechanical agitation resulted in higher volumetric enzyme productivity (200 U L−1 h−1), filter paper activity (17 U mL−1), carboxymethyl cellulase activity (11.8 U mL−1) and soluble proteins (3.2 mg mL−1) when compared to those with agitation. Stereo and polarized light microscopy analyses reveal that mechanical agitation resulted in shorter mycelial hyphae and larger numbers of tips.  相似文献   

12.
PurposeTo find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system.MethodsA function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation.ResultsThe highest mean efficiency 0.52 was obtained in TW = 0.2 s. The irradiation efficiency was approximately 21% higher than at TW = 0 s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw = 0.2 s, 4.48 GyE irradiation was completed within 250 s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420 s.ConclusionsThe results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time.  相似文献   

13.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

14.
A modification of the classical calcium alginate enzyme entrapment technique is described aiming to overcome some of the limitations of the former gel-based biocatalysts. Dried alginate entrapped enzymes (DALGEEs) were obtained dehydrating calcium alginate gel beads containing entrapped enzymes. A fructosyltransferase from Aspergillus aculeatus, present in Pectinex Ultra SP-L, was entrapped using this technique. The resulting DALGEEs were successfully tested both operating batchwise and in a continuous fixed-bed reactor for fructooligosaccharides (FOS) synthesis from sucrose. Interestingly, DALGEEs did not re-swell upon incubation in concentrated (600 g/L) sucrose solutions, probably due to the lowered water activity (aw) of such media. Confocal laser scanning microscopy of DALGEEs revealed that the enzyme molecules accumulated preferably in the shell of the particles. DALGEEs showed an approximately 30-fold higher volumetric activity (300 U/mL) compared with the calcium alginate gel beads. Moreover, a significant enhancement (40-fold) of the space-time-yield of fixed-bed bioreactors was observed when using DALGEEs as biocatalyst compared with gel beads (4030 g/day L of FOS vs. 103 g/day L). The operational stability of fixed-bed reactors packed with DALGEEs was extraordinary, providing a nearly constant FOS composition of the outlet during at least 700 h. It was also noticeable their resistance against microbial attack, even after long periods of storage at room temperature. The DALGEEs immobilisation strategy may also be useful for other biotransformations, in particular when they take place in low aw media.  相似文献   

15.
《Process Biochemistry》2014,49(1):19-24
Enterodiol (END) possesses the estrogenic and antiestrogenic activities, which could prevent the development of breast cancer and prostate cancer, as well as menopausal syndrome.Previous studies in our laboratory set up a bio-transformation method for largely yielding secoisolariciresinol (SECO) from the substrate of defatted flaxseeds by strain Bacteroides uniformis ZL-I. In this research, another two single colonies, designated as strain ZL-II and strain ZL-III, were isolated, which were closely related to Eubacterium limosum species (ZL-II), and Eggerthella lenta species (ZL-III) on the basis of 16S rRNA gene sequence data. Under the combining actions of strains ZL-(I + II + III), END could be produced from defatted flaxseed directly, ZL-II was proved to possess the activities of demethylation, while ZL-III had the activities of dehydroxylation. Secoisolariciresinol diglucoside (SDG) existed in the form of oligomeric with 3-hydroxy-3-methyl glutaric acid in flaxseed could be efficiently transformed into END under the co-culture of strains ZL-(I + II + III), with the conversion rate of more than 90%. The method for mass-producing END from defatted flaxseed reported here is meaningful not only for the medicinal values of END but also for the resource utilization of flaxseed materials.  相似文献   

16.
The effect of water content on the glass transition temperatures of cassava starch was determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Samples were transformed to the amorphous state by compression molding at high temperature (as demonstrated by wide angle X-ray diffraction, WAXS), and then the samples were moisture conditioned. Both DSC and DMTA showed that water anti-plasticized cassava starch at lower moisture contents, and plasticized it at higher water contents. Samples with higher moisture contents stored at room temperature, 45 °C and 80 °C underwent retrogradation as indicated by WAXS. Sorption isotherms of cassava starch showed that for aw values lower than around 0.85, the sorption capacity decreased with increasing temperature; while the opposite behavior was observed at aw > 0.85. This inversion point (aw = 0.85) was attributed to the fact that more active sites were exposed to the adsorption processes, due to the enhanced molecular mobility promoted in the amorphous regions by starch crystallization.  相似文献   

17.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

18.
The conversion of glycerol to 1,3-propanediol (1,3-PD) using Klebsiella pneumoniae CGMCC 1.6366 under aerobic condition was scaled up from scale 5 to 50,000 l in series. Several parameters including power input P/Vl, agitation rate n, impeller tip speed nD, superficial gas velocity us, and Res were investigated as the criteria for scaling up. Impeller tip speed was chosen as the main criterion. It was also noticed less aeration was favored in that less electron will be shunted to electron transfer chain. The fermentation in 500 l bioreactor produced 66.8 g 1,3-PD with the yield of 0.55 mol mol?1 at agitation rate and aeration of 130 rpm and 0.14 vvm air flow. Using these empirically obtained control concepts we successfully scaled up in 500–50,000 l pilot-scale reactors. The final 1,3-PD concentrations in 50,000 l bioreactor amounted to 63.3 g l?1 with the yield of 0.5 mol mol?1.  相似文献   

19.
A highly efficient laccase-producing fungus was isolated from soil and identified as Coltricia perennis SKU0322 by its morphology and by comparison of its internal transcribed spacer (ITS) rDNA gene sequence. Extracellular laccase (Cplac) from C. perennis was purified to homogeneity by anion-exchange and gel filtration chromatography. Cplac is a monomeric glycoprotein with 12% carbohydrate content and a molecular mass of 66 kDa determined by polyacrylamide-gel electrophoresis. Ultraviolet-visible absorption spectroscopy observed type 1 and type 3 copper signals from Cplac. The enzyme acted optimally at pH 3–4 and 75 °C. Its optimal activity was with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), it also oxidized various lignin-related phenols. The enzyme was characterized as a multi-copper blue laccase by its substrate specificity and internal amino acid sequence. It showed a higher catalytic efficiency towards ABTS (kcat/Km = 18.5 s?1 μM?1) and 2,6-dimethoxyphenol (kcat/Km = 13.9 s?1 μM?1) than any other reported laccase. Its high stability and catalytic efficiency suggest its suitability for industrial applications: it detoxified phenolic compounds in acid-pretreated rice straw and enhanced saccharification yield.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号