首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfide oxidation under chemolithoautotrophic denitrifying conditions   总被引:4,自引:0,他引:4  
Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate.  相似文献   

2.
In the present study, the capacity of enrichments derived from marine sediments collected from different sites of the Mexican littoral to perform anaerobic ammonium oxidation (anammox) coupled to sulfide-dependent denitrification for simultaneous removal of ammonium and sulfide linked to nitrite reduction was evaluated. Sulfide-dependent denitrification out-competed anammox during the simultaneous oxidation of sulfide and ammonium. Significant accumulation of elemental sulfur (ca. 14–30 % of added sulfide) occurred during the coupling between the two respiratory processes, while ammonium was partly oxidized (31–47 %) due to nitrite limitation imposed in sediment incubations. Nevertheless, mass balances revealed up to 38 % more oxidation of the electron donors available (ammonium and sulfide) than that expected from stoichiometry. Recycling of nitrite, from nitrate produced through anammox, is proposed to contribute to extra oxidation of sulfide, while additional ammonium oxidation is suggested by sulfate-reducing anammox (SR-anammox). The complex interaction between nitrogenous and sulfurous compounds occurring through the concomitant presence of autotrophic denitrification, conventional anammox and SR-anammox may significantly drive the nitrogen and sulfur fluxes in marine environments.  相似文献   

3.
Thioalkalivibrio denitrificans is the first example of an alkaliphilic, obligately autotrophic, sulfur-oxidizing bacterium able to grow anaerobically by denitrification. It was isolated from a Kenyan soda lake with thiosulfate as electron donor and N2O as electron acceptor at pH 10. The bacterium can use nitrite and N2O, but not nitrate, as electron acceptors during anaerobic growth on reduced sulfur compounds. Nitrate is only utilized as nitrogen source. In batch culture at pH 10, rapid growth was observed on N2O as electron acceptor and thiosulfate as electron donor. Growth on nitrite was only possible after prolonged adaptation of the culture to increasing nitrite concentrations. In aerobic thiosulfate-limited chemostats, Thioalkalivibrio denitrificans strain ALJD was able to grow between pH values of 7.5 and 10.5 with an optimum at pH 9.0. Growth of the organism in continuous culture on N2O was more stable and faster than in aerobic cultures. The pH limit for growth on N2O was 10.6. In nitrite-limited chemostat culture, growth was possible on thiosulfate at pH 10. Despite the observed inhibition of N2O reduction by sulfide, the bacterium was able to grow in sulfide-limited continuous culture with N2O as electron acceptor at pH 10. The highest anaerobic growth rate with N2O in continuous culture at pH 10 was observed with polysulfide (S8(2-)) as electron donor. Polysulfide was also the best substrate for oxygen-respiring cells. Washed cells at pH 10 oxidized polysulfide to sulfate via elemental sulfur in the presence of N2O or O2. In the absence of the electron acceptors, elemental sulfur was slowly reduced which resulted in regeneration of polysulfide. Cells of strain ALJD grown under anoxic conditions contained a soluble cd1-like cytochrome and a cytochrome-aa3-like component in the membranes.  相似文献   

4.
An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters and for simultaneous removal of sulfide or thiosulfate and nitrate. A suspended culture of sulfur-utilizing denitrifying bacteria was fast and efficiently established by bio-augmentation of activated sludge with Thiobacillus denitrificans. The stoichiometry of the process and the key factors, i.e. N/S ratio, that enable combined sulfide and nitrogen removal, were determined. An optimum N/S ratio of 1 (100% nitrate removal without nitrite formation and low thiosulfate concentrations in the effluent) has been obtained during reactor operation with thiosulfate at a nitrate loading rate (NLR) of 17.18 mmol N L(-1) d(-1). Complete nitrate and sulfide removal was achieved during reactor operation with sulfide at a NLR of 7.96 mmol N L(-1) d(-1) and at N/S ratio between 0.8 and 0.9, with oxidation of sulfide to sulfate. Complete nitrate removal while working at nitrate limiting conditions could be achieved by sulfide oxidation with low amounts of oxygen present in the influent, which kept the sulfide concentration below inhibitory levels.  相似文献   

5.
Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O(2)). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO(2) as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO(2). Both strains grow at temperatures between 5 and 40 degrees C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate.  相似文献   

6.
Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate.  相似文献   

7.
A new method based on sulfide utilizing autotrophic denitrification was adopted to remove nitrate from wastewater and to reuse spent sulfidic caustic containing high sulfide and alkalinity levels. The experiments were performed using a bench-scale upflow anoxic hybrid growth reactor (UAHGR) and an upflow anoxic suspended growth reactor (UASGR) to characterize the stoichiometric relationship between sulfur and nitrate in the process as well as the performance of the reactors. The level of nitrate removal from the UAHGR and UASGR were maintained at over 90% at a nitrate loading rate ranging from 0.15∼0.40 kgNO3 /m3·d and no significant nitrite accumulation was observed in either reactor. Although the influent pH values were higher than the optimum range of autotrophic denitrification at 8.7∼10.1, the effluent pH was stable at 7.2∼7.9 due to the production of hydrogen ions during operation. The stoichiometric ratio of sulfate production to nitrate removal was 1.5∼2.1 mgSO4 2−/mgNO3 in both reactors. A comparison of the reactor performance revealed that the chemical parameters of the UAHGR operation corresponded to a plug flow like type reactor while the chemical parameters of the UASGR operation corresponded to a completely stirred tank reactor like type reactor. UAHGR did not require sludge recycling due to the packed media while UASGR required 300∼700% sludge recycling. Therefore, spent sulfidic caustic could be used in the sulfur utilizing autotrophic denitrification processes as substrate and alkalinity sources.  相似文献   

8.
Park S  Yu J  Byun I  Cho S  Park T  Lee T 《Bioresource technology》2011,102(15):7265-7271
A laboratory-scale Bardenpho process was established to investigate the proper nitrogen loading rate (NLR) when modified spent caustic (MSC) is applied as electron donor and alkalinity source for denitrification. MSC injection induced autotrophic nitrogen removal with sulfur as electron donor and heterotrophic denitrification. The nitrogen removal rate (NRR) did not increase proportionally to NLR. Based on the total nitrogen concentration in the effluent observed in the trials with MSC, the NLR in the influent should not exceed 0.15 kg N/m3 d in order to satisfy water quality regulations. Microbial communities in the anoxic reactors were characterized by pyrosequencing of 16S rRNA gene sequences amplified by the polymerase chain reaction of DNA extracted from sludge samples. Microbial diversity was lower as MSC dosage was increased, and the injection of MSC caused an increase in SOB belonging to the genus Thiobacillus which is responsible for denitrification using sulfur.  相似文献   

9.
Wan D  Liu H  Liu R  Qu J 《Bioresource technology》2011,102(23):10803-10809
A novel combined system established for nitrate removal from aqueous solution consisted of two parts: sulfur autotrophic denitrification and bio-electrochemical denitrification based on proton-exchange membrane electrodialysis (PEMED). The system was operated at various hydraulic retention times (HRT) and current intensities. Its optimum operation condition was also determined. The combined process had pH adjustment thus generating less nitrite than PEMED process. The denitrification rate of sulfur autotrophic part was dependent on HRT, while shorter HRT could reduce the sulfate generated by the sulfur autotrophic process. The denitrification rate of PEMED process depended on the applied current. For 32 ± 1 mg-N/L nitrate in influent, the optimum operation parameters of combined process were: HRT 2 h; applied current 350 mA. The combined reactor could achieve 95.8% nitrate removal without nitrite accumulation, the pH of effluent kept neutral and the sulfate of effluent was 202.1 mg/L, lower than the drinking water standard in China.  相似文献   

10.
Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5 ± 0.2 g mol–1 for the reduction of nitrate to ammonia. By this type of metabolism, S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity in S. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate. Received: 13 March 1995 / Accepted: 29 May 1995  相似文献   

11.
Eight anaerobic enrichment cultures with thiosulfate as electron donor and nitrate as electron acceptor were inoculated with sediment samples from hypersaline alkaline lakes of Wadi Natrun (Egypt) at pH 10; however, only one of the cultures showed stable growth with complete nitrate reduction to dinitrogen gas. The thiosulfate-oxidizing culture subsequently selected after serial dilution developed in two phases. Initially, nitrate was mostly reduced to nitrite, with a coccoid morphotype prevailing in the culture. During the second stage, nitrite was reduced to dinitrogen gas, accompanied by mass development of thin motile rods. Both morphotypes were isolated in pure culture and identified as representatives of the genus Thioalkalivibrio, which includes obligately autotrophic sulfur-oxidizing haloalkaliphilic species. Nitrate-reducing strain ALEN 2 consisted of large nonmotile coccoid cells that accumulated intracellular sulfur. Its anaerobic growth with thiosulfate, sulfide, or polysulfide as electron donor and nitrate as electron acceptor resulted in the formation of nitrite as the major product. The second isolate, strain ALED, was able to grow anaerobically with thiosulfate as electron donor and nitrite or nitrous oxide (but not nitrate) as electron acceptor. Overall, the action of two different sulfur-oxidizing autotrophs resulted in the complete, thiosulfate-dependent denitrification of nitrate under haloalkaliphilic conditions. This process has not yet been demonstrated for any single species of chemolithoautotrophic sulfur-oxidizing haloalkaliphiles.  相似文献   

12.
Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfurdenitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and 7.96 mg(1/2)/l(1/2)·h were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and 6.23 mg(1/2)/l(1/2)·h were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.  相似文献   

13.
Sulfur-driven autotrophic denitrification refers to the chemolithotrophic process coupling denitrification with the oxidation of reduced inorganic sulfur compounds. Ever since 1904, when Thiobacillus denitrificans was isolated, autotrophic denitrifiers and their uncultured close relatives have been continuously identified from highly diverse ecosystems including hydrothermal vents, deep sea redox transition zones, sediments, soils, inland soda lakes, etc. Currently, 14 valid described species within α-, β-, γ-, and ε-Proteobacteria have been identified as capable of autotrophic denitrification. Autotrophic denitrification is also widely applied in environmental engineering for the removal of sulfide and nitrate from different water environments. This review summarizes recent researches on autotrophic denitrification, highlighting its diversity, metabolic traits, and engineering applications.  相似文献   

14.
It is important to determine the effect of changing environmental conditions on the microbial kinetics for design and modeling of biological treatment processes. In this research, the kinetics of nitrate and nitrite reduction by autotrophic hydrogen-dependent denitrifying bacteria and the possible role of acetogens were studied in two sequencing batch reactors (SBR) under varying pH and temperature conditions. A zero order kinetic model was proposed for nitrate and nitrite reduction and kinetic coefficients were obtained at two temperatures (25 +/- 1 and 12 +/- 1 degrees C), and pH ranging from 7 to 9.5. Nitrate and nitrite reduction was inhibited at pH of 7 at both temperatures of 12 +/- 1 and 25 +/- 1 degrees C. The optimum pH conditions for nitrate and nitrite reduction were 9.5 at 25 +/- 1 degrees C and 8.5 at 12 +/- 1 degrees C. Nitrate and nitrite reduction rates were compared, when they were used separately as the sole electron acceptor. It was shown that nitrite reduction rates consistently exceeded nitrate reduction rates, regardless of temperature and pH. The observed transitional accumulation of nitrite, when nitrate was used as an electron acceptor, indicated that nitrite reduction was slowed down by the presence of nitrate. No activity of acetogenic bacteria was observed in the hydrogenotrophic biomass and no residual acetate was detected, verifying that the kinetic parameters obtained were not influenced by heterotrophic denitrification and accurately represented autotrophic activity.  相似文献   

15.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

16.
Nitrate amendment is normally an effective method for sulfide control in oil field-produced waters. However, this approach has occasionally failed to prevent sulfide accumulation, despite the presence of active nitrate-reducing bacterial populations. Here, we report our study of bulk chemical transformations in microcosms of oil field waters containing nitrate-reducing, sulfide-oxidizing bacteria, but lacking denitrifying heterotrophs. Amendment with combinations of nitrate, acetate, and phosphate altered the microbial sulfur and nitrogen transformations. Elemental sulfur produced by chemotrophic nitrate-reducing bacteria was re-reduced heterotrophically to sulfide. Ammonification, rather than denitrification, was the predominant pathway for nitrate reduction. The application of nitrite led to transient sulfide depletion, possibly due to higher rates of nitrite reduction. The addition of molybdate suppressed both the accumulation of sulfide and the heterotrophic reduction of nitrate. Therefore, sulfidogenesis was likely due to elemental sulfur-reducing heterotrophic bacteria, and the nitrate-reducing microbial community consisted mainly of facultatively chemotrophic microbes. This study describes one set of conditions for continued sulfidogenesis during nitrate reduction, with important implications for nitrate control of sulfide production in oil fields.  相似文献   

17.
Autotrophic nitrite removal in the cathode of microbial fuel cells   总被引:3,自引:0,他引:3  
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.  相似文献   

18.
Effects of artificial electron donors to deliver reducing power on enzymic denitrification were investigated using nitrate reductase and nitrite reductase obtained fromOchrobactrum antropi. The activity of nitrite reductase in the soluble portion was almost the same as that in the precipitated portion of the cell extract. Nitrate removal efficiency was higher with benzyl viologen than with methyl viologen or NADH as an artificial electron donor. The turn-over numbers of nitrate and nitrite reductase were 14.1 and 1.9 μmol of nitrogen reduced/min·mg cell extracts, respectively when benzyl viologen was used as an electron donor.  相似文献   

19.
【目的】利用N-甲基吡咯烷酮(N-methylpyrrolidone, NMP)作为电子供体进行反硝化实验,以实现废水资源化。【方法】分别将NMP废水和葡萄糖作为电子供体加入到模拟的城市污水处理尾水中进行反硝化,比较2种电子供体去除硝酸盐的规律。同时考查NMP在反硝化过程中的氮素释放规律,并对所释放的氮素进行后续处理。最后再对它们作为电子供体时的反硝化污泥采用高通量测序,从微生物群落的角度分析NMP作为电子供体时其作用机理是否相同。【结果】当以NMP为电子供体时,硝酸盐氮的去除速率比葡萄糖为电子供体时要快67%。在8 h的反硝化结束后,剩余的硝酸盐氮、累积的亚硝酸盐氮和NMP本身所释放氨氮之和的总氮,与葡萄糖为电子供体时相近。【结论】NMP废水可以作为电子供体用于城镇污水处理厂的深度脱氮。对2种碳源所驯化的反硝化污泥样品进行高通量分析表明,NMP与葡萄糖作为电子供体用于反硝化反应时,相关的作用机理是不同的。该项研究结果对利用含氮杂环化合物作为电子供体进行反硝化具有重要的理论指导意义。  相似文献   

20.
In this study, a vertical submerged biofilm reactor was applied to investigate autotrophic partial nitrification/denitrification and simultaneous sulfide removal by using synthetic wastewater. The appropriate influent ratios of ammonia and sulfide needed to achieve partial autotrophic nitrification and denitrification were evaluated with influent ammonium nitrogen ranging from 54.6 to 129.8 mg L?1 and sulfide concentrations ranging from 52.7 to 412.4 mg S L?1. The results demonstrated that the working parameter was more stable when the sulfur/nitrogen ratio was set at 3:2, which yielded the maximum sulfur conversion. Batch experiments with different phosphate concentrations proved that a suitable phosphate buffer solution to control pH values could improve synchronous desulfurization denitrification process performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号