首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Modified vaccinia virus Ankara (MVA) has a highly restricted host range in cell culture and is apathogenic in vivo. MVA was derived from the parental chorioallantois vaccinia virus Ankara (CVA) by more than 570 passages in chicken embryo fibroblast (CEF) cells. During CEF cell passaging, six major deletions comprising 24,668 nucleotides occurred in the CVA genome. We have cloned both the MVA and the parental CVA genome as bacterial artificial chromosomes (BACs) and have sequentially introduced the six major MVA deletions into the cloned CVA genome. Reconstituted mutant CVA viruses containing up to six major MVA deletions showed no detectable replication restriction in 12 of 14 mammalian cell lines tested; the exceptions were rabbit cell lines RK13 and SIRC. In mice, CVA mutants with up to three deletions showed slightly enhanced virulence, suggesting that gene deletion in replicating vaccinia virus (VACV) can result in gain of fitness in vivo. CVA mutants containing five or all six deletions were still pathogenic, with a moderate degree of attenuation. Deletion V was mainly responsible for the attenuated phenotype of these mutants. In conclusion, loss or truncation of all 31 open reading frames in the six major deletions is not sufficient to reproduce the specific MVA phenotype of strong attenuation and highly restricted host range. Mutations in viral genes outside or in association with the six major deletions appear to contribute significantly to this phenotype. Host range restriction and avirulence of MVA are most likely a cooperative effect of gene deletions and mutations involving the major deletions.Modified vaccinia virus Ankara (MVA) was derived from the parental strain chorioallantois vaccinia virus Ankara (CVA) by more than 570 passages in chicken embryo fibroblast (CEF) cells and became severely host cell restricted to avian cells (6, 9, 26). MVA is apathogenic in mammalian hosts, while maintaining excellent immunogenicity (5, 18, 41, 46). Due to the versatility of MVA as a gene expression vector and its immunogenicity, MVA offers an attractive basis for recombinant vector vaccines (17, 48, 50). In addition, the recent appreciation of the possibility of accidental or deliberate release of the smallpox virus renewed interest in an MVA-based smallpox vaccine. MVA was used in the 1970s as a priming vaccine prior to the administration of conventional smallpox vaccine in a two-step program. No significant adverse events were reported after the administration of MVA to more than 120,000 primary vaccinees in Germany (27, 45). Recent clinical studies using a third-generation vaccine, MVA-BN, as a stand-alone smallpox vaccine confirmed its excellent safety profile (56, 57) and underscored its potential as a safe vaccine vector against human infections with various pathogens as well as against cancer.One important reason for the versatility of MVA as a vaccine vector is its particular host range phenotype, which allows the viral gene expression program to proceed until late times in infection, resulting in efficient expression of viral as well as recombinant proteins. The block in viral replication occurs very late during assembly of mature and infectious viral particles (42, 48). With the notable exception of the Syrian hamster cell line BHK-21 and the recently described rat cell line IEC-6, MVA has a very limited ability to productively replicate in mammalian cells (9, 16, 35). The genetic basis of the particular host range restriction of MVA is still not well defined. Comparisons with NYVAC, another replication-deficient vaccinia virus vector (54), showed that significant differences in gene expression programs, apoptosis induction, and immunogenicity exist between NYVAC and MVA (19, 31, 32), although they have very similar host ranges in vitro. Thus, comprehensive knowledge of the genetic factors determining the host ranges of such vectors is necessary to provide a deeper understanding of the basis for the safety and immunogenicity to eventually allow their further optimization.In the course of passaging CVA on CEF cells, the virus acquired six large genomic deletions totaling more than 24 kbp of genomic DNA and deleting or truncating 31 open reading frames (ORFs). In addition to the six major deletions, a multitude of shorter deletions and insertions as well as point mutations have occurred in the MVA genome, resulting in gene fragmentation, truncation, short internal deletions, and amino acid exchanges (29). Some or all of these mutations might also contribute to the attenuated phenotype of MVA. MVA no longer encodes many of the known poxviral immune evasion and virulence factors (2). Of the five classical host range genes present in vaccinia virus (VACV), only C12L/SPI-1 and K1L are deleted or truncated in MVA, whereas C7L, K3L, and E3L are preserved. Deletion of C12L/SPI-1 and K1L contributed to the limited MVA host range, but their reconstitution only partially reversed the MVA host range restriction in selected cell lines (49, 59). Marker rescue experiments using large fragments of the CVA genome suggested that at least two further host range genes apart from C12L/SPI-1, C7L, and K1L might reside in the left part of the VACV genome (59).It is presently unknown how the multiple genetic alterations of MVA determine its limited ability to replicate in most mammalian cells and its lack of pathogenicity in vivo. Since restricted host range and lack of pathogenicity of MVA have commonly been associated with the large deletions in the MVA genome, we aimed at sequentially introducing the six major MVA-like deletions in CVA. To facilitate and accelerate mutagenesis, we have generated bacterial artificial chromosome (BAC) clones of both the MVA and CVA genomes. The use of a counterselectable marker allowed multiple consecutive rounds of mutagenesis of the CVA-BAC (39, 58, 62). The resulting CVA mutants showed that even the introduction of all six major MVA deletions did not create an MVA-like host range phenotype and caused only slight attenuation of the parental CVA virus in a murine intranasal infection model. This result indicates that major host range determinants of MVA are located outside the six large deletions. The host range and virulence phenotype of MVA most probably result from a combined effect of mutation of these unknown factors in conjunction with the six major deletions.  相似文献   

4.
5.
The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.Through correlative studies with macaques challenged with simian immunodeficiency virus (SIV), the initial targets of infection in nontraumatic vaginal exposure to human immunodeficiency virus type 1 (HIV-1) have been identified as subepithelial T cells and dendritic cells (DCs) (18, 23, 31, 36-38). While human transmission may differ from macaque transmission, the existing models of human transmission remain controversial. For the virus to successfully reach its CD4+ targets, HIV must first traverse the columnar mucosal epithelial cell barrier of the endocervix or uterus or the stratified squamous barrier of the vagina or ectocervix, whose normal functions include protection of underlying tissue from pathogens. This portion of the human innate immune defense system represents a significant impediment to transmission. Studies have placed the natural transmission rate of HIV per sexual act between 0.005 and 0.3% (17, 45). Breaks in the epithelial barrier caused by secondary infection with other sexual transmitted diseases or the normal physical trauma often associated with vaginal intercourse represent one potential means for viral exposure to submucosal cells and have been shown to significantly increase transmission (reviewed in reference 11). However, studies of nontraumatic exposure to SIV in macaques demonstrate that these disruptions are not necessary for successful transmission to healthy females. This disparity indicates that multiple mechanisms by which HIV-1 can pass through mucosal epithelium might exist in vivo. Identifying these mechanisms represents an important obstacle to understanding and ultimately preventing HIV transmission.Several host cellular receptors, including DC-specific intercellular adhesion molecule-grabbing integrin, galactosyl ceramide, mannose receptor, langerin, heparan sulfate proteoglycans (HSPGs), and chondroitin sulfate proteoglycans, have been identified that facilitate disease progression through binding of HIV virions without being required for fusion and infection (2, 3, 12, 14, 16, 25, 29, 30, 43, 46, 50). These host accessory proteins act predominately through glycosylation-based interactions between HIV envelope (Env) and the host cellular receptors. These different host accessory factors can lead to increased infectivity in cis and trans or can serve to concentrate and expose virus at sites relevant to furthering its spread within the body. The direct transcytosis of cell-free virus through primary genital epithelial cells and the human endometrial carcinoma cell line HEC1A has been described (7, 9); this is, in part, mediated by HSPGs (7). Within the HSPG family, the syndecans have been previously shown to facilitate trans infection of HIV in vitro through binding of a specific region of Env that is moderately conserved (7, 8). This report also demonstrates that while HSPGs mediate a portion of the viral transcytosis that occurs in these two cell types, a significant portion of the observed transport occurs through an HSPG-independent mechanism. Other host cell factors likely provide alternatives to HSPGs for HIV-1 to use in subverting the mucosal epithelial barrier.gp340 is a member of the scavenger receptor cysteine-rich (SRCR) family of innate immune receptors. Its numerous splice variants can be found as a secreted component of human saliva (34, 41, 42) and as a membrane-associated receptor in a large number of epithelial cell lineages (22, 32, 40). Its normal cellular function includes immune surveillance of bacteria (4-6, 44), interaction with influenza A virus (19, 20, 32, 51) and surfactant proteins in the lung (20, 22, 33), and facilitating epithelial cell regeneration at sites of cellular inflammation and damage (27, 32). The secreted form of gp340, salivary agglutinin (SAG), was identified as a component of saliva that inhibits HIV-1 transmission in the oral pharynx through a specific interaction with the viral envelope protein that serves to agglutinate the virus and target it for degradation (34, 35, 41). Interestingly, SAG was demonstrated to form a direct protein-protein interaction with HIV Env (53, 54). Later, a cell surface-associated variant of SAG called gp340 was characterized as a binding partner for HIV-1 in the female genital tract that could facilitate virus transmission to susceptible targets of infection (47) and as a macrophage-expressed enhancer of infection (10).  相似文献   

6.
7.
8.
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 × 106 to 10 × 106 viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.Despite years of intense research, a truly protective AIDS vaccine is far away. Suboptimal immunogenicity, inadequate antigen presentation, and inappropriate immune system activation are believed to have contributed to these disappointing results. However, several lines of evidence suggest that the control or prevention of infection is possible. For example, despite repeated exposures, some individuals escape infection or delay disease progression after being infected (1, 14, 15). Furthermore, passively infused neutralizing antibodies (NA) (28, 42, 51) or endogenously expressed NA derivatives (29) have been shown to provide protection against intravenous simian immunodeficiency virus challenge. On the other hand, data from several vaccine experiments suggest that cellular immunity is an important factor for protection (6, 32). Therefore, while immune protection against human immunodeficiency virus (HIV) and other lentiviruses appears feasible, the strategies for eliciting it remain elusive.Because of its crucial role in viral replication and infectivity, the HIV envelope (Env) is an attractive immunogen and has been included in nearly all vaccine formulations tested so far (28, 30, 31). Env surface (SU) and transmembrane glycoproteins (gp) are actively targeted by the immune system (9, 10, 47), and Env-specific antibodies and cytotoxic T lymphocytes (CTLs) are produced early in infection. The appearance of these effectors also coincides with the decline of viremia during the acute phase of infection (30, 32). Individuals who control HIV infection in the absence of antiretroviral therapy have Env-specific NA and CTL responses that are effective against a wide spectrum of viral strains (14, 23, 35, 52, 60). At least some of the potentially protective epitopes in Env appear to interact with the cellular receptors during viral entry and are therefore highly conserved among isolates (31, 33, 39, 63). However, these epitopes have complex secondary and tertiary structures and are only transiently exposed by the structural changes that occur during the interaction between Env and its receptors (10, 11, 28). As a consequence, these epitopes are usually concealed from the immune system, and this may explain, at least in part, why Env-based vaccines have failed to show protective efficacy. Indeed, data from previous studies suggested that protection may be most effectively triggered by nascent viral proteins (22, 28, 30, 48, 62).We have conducted a proof-of-concept study to evaluate whether presenting Env to the immune system in a manner as close as possible to what occurs in the context of a natural infection may confer some protective advantage. The study was carried out with feline immunodeficiency virus (FIV), a lentivirus similar to HIV that establishes persistent infections and causes an AIDS-like disease in domestic cats. As far as it is understood, FIV evades immune surveillance through mechanisms similar to those exploited by HIV, and attempts to develop an effective FIV vaccine have met with difficulties similar to those encountered with AIDS vaccines (25, 37, 66). In particular, attempts to use FIV Env as a protective immunogen have repeatedly failed (13, 38, 58). Here we report the result of one experiment in which specific-pathogen-free (SPF) cats primed with a DNA immunogen encoding FIV Env and feline granulocyte-macrophage colony-stimulating factor (GM-CSF) and boosted with viable, autologous T lymphocytes ex vivo that were transduced to express Env and feline interleukin 15 (IL-15) showed a remarkable level of protection against challenge with ex vivo FIV. Consistent with recent findings indicating the importance of NA in controlling lentiviral infections (1, 59, 63), among the immunological parameters investigated, only the titers of NA correlated inversely with protection. Collectively, the findings support the notion that Env is a valuable vaccine immunogen but needs to be administered in a way that permits the expression of its full protective potential.  相似文献   

9.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

10.
11.
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.Lentiviruses display an exquisite ability to infect dividing and nondividing cells alike that is unequalled among Retroviridae. This property is thought to be due to the particular behavior or composition of the viral nucleoprotein complexes (NPCs) that are liberated into the cytoplasm of target cells upon virus-to-cell membrane fusion and that allow lentiviruses to traverse an intact nuclear membrane (17, 28, 29, 39, 52, 55, 67, 79). In the case of the human immunodeficiency type I virus (HIV-1), several studies over the years identified viral components of such structures with intrinsic karyophilic properties and thus perfect candidates for mediation of the passage of viral DNA (vDNA) through the nuclear pore: the matrix protein (MA); Vpr; the integrase (IN); and a three-stranded DNA flap, a structure present in neo-synthesized viral DNA, specified by the central polypurine tract-central termination sequence (cPPT-CTS). It is clear that these elements may mediate nuclear import directly or via the recruitment of the host''s proteins, and indeed, several cellular proteins have been found to influence HIV-1 infection during nuclear import, like the karyopherin α2 Rch1 (38); importin 7 (3, 30, 93); the transportin SR-2 (13, 20); or the nucleoporins Nup98 (27), Nup358/RANBP2, and Nup153 (13, 56).More recently, the capsid protein (CA), the main structural component of viral nucleoprotein complexes at least upon their cytoplasmic entry, has also been suggested to be involved in nuclear import or in postnuclear entry steps (14, 25, 74, 90, 92). Whether this is due to a role for CA in the shaping of viral nucleoprotein complexes or to a direct interaction between CA and proteins involved in nuclear import remains at present unknown.Despite a large number of reports, no single viral or cellular element has been described as absolutely necessary or sufficient to mediate lentiviral nuclear import, and important controversies as to the experimental evidences linking these elements to this step exist. For example, MA was among the first viral protein of HIV-1 described to be involved in nuclear import, and 2 transferable nuclear localization signals (NLSs) have been described to occur at its N and C termini (40). However, despite the fact that early studies indicated that the mutation of these NLSs perturbed HIV-1 nuclear import and infection specifically in nondividing cells, such as macrophages (86), these findings failed to be confirmed in more-recent studies (23, 33, 34, 57, 65, 75).Similarly, Vpr has been implicated by several studies of the nuclear import of HIV-1 DNA (1, 10, 21, 43, 45, 47, 64, 69, 72, 73, 85). Vpr does not possess classical NLSs, yet it displays a transferable nucleophilic activity when fused to heterologous proteins (49-51, 53, 77, 81) and has been shown to line onto the nuclear envelope (32, 36, 47, 51, 58), where it can truly facilitate the passage of the viral genome into the nucleus. However, the role of Vpr in this step remains controversial, as in some instances Vpr is not even required for viral replication in nondividing cells (1, 59).Conflicting results concerning the role of IN during HIV-1 nuclear import also exist. Indeed, several transferable NLSs have been described to occur in the catalytic core and the C-terminal DNA binding domains of IN, but for some of these, initial reports of nuclear entry defects (2, 9, 22, 46, 71) were later shown to result from defects at steps other than nuclear import (60, 62, 70, 83). These reports do not exclude a role for the remaining NLSs in IN during nuclear import, and they do not exclude the possibility that IN may mediate this step by associating with components of the cellular nuclear import machinery, such as importin alpha and beta (41), importin 7 (3, 30, 93, 98), and, more recently, transportin-SR2 (20).The central DNA flap, a structure present in lentiviruses and in at least 1 yeast retroelement (44), but not in other orthoretroviruses, has also been involved in the nuclear import of viral DNA (4, 6, 7, 31, 78, 84, 95, 96), and more recently, it has been proposed to provide a signal for viral nucleoprotein complexes uncoating in the proximity of the nuclear pore, with the consequence of providing a signal for import (8). However, various studies showed an absence or weakness of nuclear entry defects in viruses devoid of the DNA flap (24, 26, 44, 61).Overall, the importance of viral factors in HIV-1 nuclear import is still unclear. The discrepancies concerning the role of MA, IN, Vpr, and cPPT-CTS in HIV-1 nuclear import could in part be explained by their possible redundancy. To date, only one comprehensive study analyzed the role of these four viral potentially karyophilic elements together (91). This study showed that an HIV-1 chimera where these elements were either deleted or replaced by their murine leukemia virus (MLV) counterparts was, in spite of an important infectivity defect, still able to infect cycling and cell cycle-arrested cell lines to similar efficiencies. If this result indicated that the examined viral elements of HIV-1 were dispensable for the cell cycle independence of HIV, as infections proceeded equally in cycling and arrested cells, they did not prove that they were not required in nuclear import, because chimeras displayed a severe infectivity defect that precluded their comparison with the wild type (WT).Nuclear import and cell cycle independence may not be as simply linked as previously thought. On the one hand, there has been no formal demonstration that the passage through the nuclear pore, and thus nuclear import, is restricted to nondividing cells, and for what we know, this passage may be an obligatory step in HIV infection in all cells, irrespective of their cycling status. In support of this possibility, certain mutations in viral elements of HIV affect nuclear import in dividing as well as in nondividing cells (4, 6, 7, 31, 84, 95). On the other hand, cell cycle-independent infection may be a complex phenomenon that is made possible not only by the ability of viral DNA to traverse the nuclear membrane but also by its ability to cope with pre- and postnuclear entry events, as suggested by the phenotypes of certain CA mutants (74, 92).Given that the cellular environment plays an important role during the early steps of viral infection, we chose to analyze the role of the four karyophilic viral elements of HIV-1 during infection either alone or combined in a wide comparison between cells highly susceptible to infection and more-restrictive primary cell targets of HIV-1 in vivo, such as primary blood lymphocytes (PBLs), monocyte-derived macrophages (MDM), and dendritic cells (DCs).In this study, we show that an HIV-1-derived virus in which the 2 NLSs of MA are mutated and the IN, Vpr, and cPPT-CTS elements are removed displays no detectable nuclear import defect in HeLa cells independently of their cycling status. However, this mutant virus is partially impaired for nuclear entry in primary cells and more specifically in DCs and PBLs. We found that this partial defect is specified by the cPPT-CTS, while the 3 remaining elements seem to play no role in nuclear import. Thus, our study indicates that the central DNA flap specifies the most important role among the viral elements involved thus far in nuclear import. However, it also clearly indicates that the role played by the central DNA flap is not absolute and that its importance varies depending on the cell type, independently from the dividing status of the cell.  相似文献   

12.
13.
14.
15.
16.
17.
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.The development of an AIDS vaccine is an ongoing and urgent challenge. One of the major hurdles is that the specific correlates of protection against human immunodeficiency virus (HIV) are still largely unknown. Nonetheless, most agree that the full complement of cellular and humoral components of the immune system will be needed to combat this virus. This is especially true given that the virus resides permanently in its host, infects the very cells needed to direct effective immune responses, and evades the immune system, either by changing in appearance or hiding in subcellular compartments.A broadly reactive neutralizing antibody response is likely to be critical as a first line of defense upon initial HIV exposure by aiding in the clearance of cell-free virions, targeting infected cells for destruction, and preventing viral spread through cell-to-cell transmission. The presence of inhibitory antibodies in highly exposed persistently seronegative individuals testifies to the importance of the humoral response (9, 37). Additionally, broadly neutralizing serum has been associated with healthier prognoses for infected individuals (27, 65) and may be vital for protecting offspring from their infected mothers (7, 79) and preventing superinfection by heterologous HIV strains (23, 84). Even if complete protection cannot be achieved by vaccine-derived antibodies, an early, well-poised and effective neutralizing antibody repertoire may be able to lower the set point of the viral load following the initial burst of viremia, an outcome that has been reported to translate into improved disease outcomes and reduced transmission of HIV (66, 74). Further benefits of neutralizing antibodies have been seen with passive immunization studies in macaques, in which administration of broadly neutralizing monoclonal antibodies (MAbs) has demonstrated that it is possible to provide protection from—and even sterilizing immunity against—HIV infection (5, 51, 66). There is also evidence that such antibodies may provide therapeutic benefits for chronically infected individuals, analogous to benefits realized with anti-HIV drug treatment regimens (87).Despite the promising potential of broadly neutralizing MAbs, designing immunogens that can elicit such cross-reactive neutralizing responses against HIV has been a surprisingly difficult task. Since the majority of the host''s B-cell response is directed against the envelope (Env) glycoproteins, gp120 and gp41, vaccine efforts have concentrated on these proteins and derivatives thereof in approaches ranging from the use of Env-based peptide cocktails to recombinant proteins and DNAs made with varied or consensus sequences and diverse, heterologous prime/protein boost regimens (reviewed in references 36, 58, and 70). These iterative studies have shown notable improvements in the potency and breadth of neutralizing responses induced. However, concerns exist regarding immunogens containing extraneous epitopes, as is the case with intact subunits of Env, and the nature of the immune responses they may elicit. A polyclonal burst of antibodies against a multitude of nonfunctional epitopes may include a predominance of antibodies that are (i) low affinity and/or nonfunctional (reviewed in reference 72); (ii) isolate specific (25); (iii) able to interfere with the neutralizing capabilities of otherwise-effective antibodies (via steric hindrance or by inducing various forms of B-cell pathology) (67); or (iv) directed against irrelevant epitopes instead of more conserved (and sometimes concealed) epitopes that might be able to elicit more potent and cross-reactive neutralizing responses (28, 71, 91).We have developed a system that can be used to present essentially any chosen epitope in a stable, well-exposed manner on the surface of the cold-causing human rhinovirus (HRV). HRV is itself a powerful immunogen and is able to elicit T-cell as well as serum and mucosal B-cell responses (reviewed by Couch [22]) and has minimal immunologic similarity to HIV (data not shown). Chimeric viruses displaying optimal epitopes should be able to serve as valuable components in an effective vaccine cocktail or as part of a heterologous prime/boost protocol. We have shown previously that HRV chimeric viruses displaying HIV-1 gp120 V3 loop sequences are able to elicit neutralizing responses against HIV-1 (75, 82, 83).In this study, we focused our attention on presenting part of the membrane-proximal external region (MPER) of the transmembrane glycoprotein gp41, a region of approximately 30 amino acids adjacent to the transmembrane domain (reviewed in references 59 and 97). The MPER plays an important role in the process of HIV fusion to the host cell membrane (60, 78). This region is also involved in binding to galactosylceramide, an important component of cell membranes, thus permitting CD4-independent transcytosis of the virus across epithelial cells at mucosal surfaces (1, 2). These functions likely explain this region''s sequence conservation and the efficacy of antibodies directed against the MPER (97), particularly given that an estimated 80% of HIV-1 infections are sexually transmitted at mucosal membranes. In fact, potent responses against the MPER are associated with stronger and broader neutralizing capabilities in infected individuals (68). A conserved, contiguous sequence of the MPER, the ELDKWA epitope (HIV-1 HxB2 gp41 residues 662 to 668), is recognized by the particularly broadly neutralizing human MAb 2F5 (11, 62, 85) and is highly resistant to escape mutation in the presence of 2F5 (49). 2F5 was also used in the MAb cocktails reported to confer passive, protective immunity in macaques (5, 51). In addition, infected individuals producing neutralizing antibodies directed against the ELDKWA epitope have been seen to exhibit better health (16, 29), including persistent seronegativity (8), and reduced transmission of HIV to offspring (89). While none of the vaccine-induced immune responses generated against this region has been effective thus far (19, 24, 26, 33, 35, 38, 40, 42, 44-48, 50, 53, 54, 56, 57, 61, 63, 69, 93, 96) (see Table S1 in the supplemental material), more appropriate presentations of MPER epitopes should produce valuable immunogens that can contribute to a successful vaccine.In this study, we have grafted the ELDKWA epitope onto a surface loop of HRV connected via linkers of variable lengths and sequences and selected for viruses well recognized and neutralized by MAb 2F5. In so doing, we have been able to create immunogens capable of eliciting antibodies whose activities mimic some of those of 2F5. The combinatorial libraries produced were designed to encode a large set of possible sequences and, hence, structures from which we could search for valuable conformations. This work illustrates that HRV chimeras have the potential to present selected HIV epitopes in a focused and immunogenic manner.  相似文献   

18.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号