首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Peroxisomes are dynamic organelles that often proliferate in response to compounds that they metabolize. Peroxisomes can proliferate by two apparent mechanisms, division of preexisting peroxisomes and de novo synthesis of peroxisomes. Evidence for de novo peroxisome synthesis comes from studies of cells lacking the peroxisomal integral membrane peroxin Pex3p. These cells lack peroxisomes, but peroxisomes can assemble upon reintroduction of Pex3p. The source of these peroxisomes has been the subject of debate. Here, we show that the amino-terminal 46 amino acids of Pex3p of Saccharomyces cerevisiae target to a subdomain of the endoplasmic reticulum and initiate the formation of a preperoxisomal compartment for de novo peroxisome synthesis. In vivo video microscopy showed that this preperoxisomal compartment can import both peroxisomal matrix and membrane proteins leading to the formation of bona fide peroxisomes through the continued activity of full-length Pex3p. Peroxisome formation from the preperoxisomal compartment depends on the activity of the genes PEX14 and PEX19, which are required for the targeting of peroxisomal matrix and membrane proteins, respectively. Our findings support a direct role for the endoplasmic reticulum in de novo peroxisome formation.  相似文献   

2.
The surprising complexity of peroxisome biogenesis   总被引:7,自引:0,他引:7  
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.  相似文献   

3.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has triggered global health and economic crises. Here we report the effects of SARS-CoV-2 infection on peroxisomes of human cell lines Huh-7 and SK-N-SH. Peroxisomes undergo dramatic changes in morphology in SARS-CoV-2-infected cells. Rearrangement of peroxisomal membranes is followed by redistribution of peroxisomal matrix proteins to the cytosol, resulting in a dramatic decrease in the number of mature peroxisomes. The SARS-CoV-2 ORF14 protein was shown to interact physically with human PEX14, a peroxisomal membrane protein required for matrix protein import and peroxisome biogenesis. Given the important roles of peroxisomes in innate immunity, SARS-CoV-2 may directly target peroxisomes, resulting in loss of peroxisome structural integrity, matrix protein content and ability to function in antiviral signaling.  相似文献   

4.
Peroxisomes are thought to be formed by division of pre-existing peroxisomes after the import of newly synthesized proteins. However, it has been recently suggested that the endoplasmic reticulum (ER) provides an alternative de novo mechanism for peroxisome biogenesis in some cells. To test a possible role of the ER-Golgi transit in peroxisome biogenesis in mammalian cells, we evaluated the biogenesis of three peroxisomal membrane proteins (PMPs): ALDRP (adrenoleukodystrophy related protein), PMP70 and Pex3p in CHO cells. We constructed chimeric genes encoding these PMPs and green fluorescent protein (GFP), and transiently transfected them to wild type and mutant CHO cells, in which normal peroxisomes were replaced by peroxisomal membrane ghosts. The expressed proteins were targeted to peroxisomes and peroxisomal ghosts correctly in the presence or absence of Brefeldin A (BFA), a drug known to block the ER-Golgi transit. Furthermore, low temperature did not disturb the targeting of Pex3p-GFP to peroxisomes. We also constructed two chimeric proteins of PMPs containing an ER retention signal "DEKKMP": GFP-ALDRP-DEKKMP and myc- Pex3p-DEKKMP. These proteins were mostly targeted to peroxisomes. No colocalization with an ER maker was found. These results suggest that the classical ER-Golgi pathway does not play a major role in the biogenesis of mammalian PMPs.  相似文献   

5.
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5–PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.  相似文献   

6.
Peroxisomes contain oxidases generating hydrogen peroxide, and catalase degrading this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid beta-oxidation. However, in peroxisomes a variety of other metabolic pathways are located. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine etc) as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of peroxisomal structure and functions causes many human disorders. The similar defects have been identified in yeast mutants defective in peroxisomal biogenesis. Peroxisomal biogenesis is actively studied during last two decades using uni- and multicellular model systems. It was observed that many aspects of peroxisomal biogenesis and proteins involved in this process display striking similarity between all eukaryotes, from yeasts to humans. Yeast is a convenient model system for this kind of research. Current review summarizes data on molecular events of peroxisomal biogenesis, functions of peroxine proteins, import of peroxisomal matrix and membrane proteins and on mechanisms of peroxisomedivision and inheritance.  相似文献   

7.
Peroxisome biogenesis and the role of protein import   总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

8.
9.
Peroxisomes contain oxidases, which generate hydrogen peroxide, and catalase, which degrades this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid β-oxidation. However, a variety of other metabolic pathways are also located in peroxisomes. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine, etc.), as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of the peroxisome structure and functions causes many human disorders. Similar defects were identified in yeast mutants defective in peroxisome biogenesis. Peroxisome biogenesis has been actively studied using unicellular and multicellular model systems over the last two decades. It was observed that many aspects of peroxisome biogenesis and proteins involved in the process display striking similarity among all eukaryotes from yeasts to humans. Yeasts provide a convenient model system for this kind of research. The review summarizes the data on the molecular events of peroxisome biogenesis, the functions of peroxine proteins, the import of peroxisomal matrix and membrane proteins, and the mechanisms of peroxisome division and inheritance.  相似文献   

10.
Peroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways. Most enzymes in the peroxisomal matrix are linked to lipid metabolism and detoxification of reactive oxygen species. Proper assembly of peroxisomes and thus also import of their enzymes relies on specific peroxisomal biogenesis factors, so called peroxins with PEX being the gene acronym. To date, 13 PEX genes are known to cause PBDs when mutated. Studies of the cellular and molecular defects in cells derived from PBD patients have significantly contributed to the understanding of the functional role of the corresponding peroxins in peroxisome assembly. In this review, we discuss recent data derived from both human cell culture as well as model organisms like yeasts and present an overview on the molecular mechanism underlying peroxisomal biogenesis disorders with emphasis on disorders caused by defects in the peroxisomal matrix protein import machinery. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

11.
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.  相似文献   

12.
Peroxisomes are essential and dynamic organelles that allow cells to rapidly adapt and cope with changing environments and/or physiological conditions by modulation of both peroxisome biogenesis and turnover. Peroxisome biogenesis involves the assembly of peroxisome membranes and the import of peroxisomal matrix proteins. The latter depends on the receptor, PEX5, which recognizes peroxisomal matrix proteins in the cytosol directly or indirectly, and transports them to the peroxisomal lumen. In this review, we discuss the role of PEX5 ubiquitination in both peroxisome biogenesis and turnover, specifically in PEX5 receptor recycling, stability and abundance, as well as its role in pexophagy (autophagic degradation of peroxisomes).  相似文献   

13.
The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or β-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD+ becomes regenerated during fatty acid β-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.  相似文献   

14.
Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells.  相似文献   

15.
Peroxisomes are essential organelles responsible for many metabolic reactions, such as the oxidation of very long chain and branched fatty acids, D-amino acids and polyamines, as well as the production and turnover of hydrogen peroxide. They comprise a class of organelles called microbodies, including glycosomes, glyoxysomes and Woronin bodies. Dysfunction of human peroxisomes causes severe and often fatal peroxisome biogenesis disorders (PBDs). Peroxisomal matrix protein import is mediated by receptors that shuttle between the cytosol and peroxisomal matrix using ubiquitination/deubiquitination reactions and ATP hydrolysis for receptor recycling. We focus on the machinery involved in the peroxisomal matrix protein import cycle, highlighting recent advances in peroxisomal matrix protein import, cargo release and receptor recycling/degradation.  相似文献   

16.
The peroxisome: an update on mysteries   总被引:1,自引:0,他引:1  
Peroxisomes contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, which render them indispensable to human health and development. Peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. In recent years, the interest in peroxisomes and their physiological functions has significantly increased. This review intends to highlight recent discoveries and trends in peroxisome research, and represents an update as well as a continuation of a former review article. Novel exciting findings on the biological functions, biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross-talk of peroxisomes with other subcellular compartments are addressed. Furthermore, recent findings on the role of peroxisomes in the brain are discussed.  相似文献   

17.
18.
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.  相似文献   

19.
过氧化物酶体(peroxisomes)是真核细胞中一类单层膜包被的细胞器,参与多种生化代谢.过氧化物酶体起源于内质网,过氧化物酶体形成相关的蛋白称为Peroxin,其编码基因通常写作PEX.细胞中过氧化物酶体的选择性消解称为过氧化物酶体自噬(pexophagy).参与细胞自噬(autophagy)的基因(ATG)大多参与过氧化物酶体自噬.近年来,丝状真菌中过氧化物酶体形成与降解机制的研究进展迅速,相关基因不断被鉴定.本文对相关研究进行了简要评述,并以稻瘟病菌为例,对丝状真菌基因组中可能的PEX和ATG基因进行了检索.发现稻瘟病菌中存在除PEX15,PEX17,PEX18,PEX21,PEX22,ATG19,ATG25,ATG30和ATG31之外的大多数PEX和ATG基因;同时,还存在多个丝状真菌特有的基因.说明过氧化物酶体的产生与消解在酵母、丝状真菌与哺乳动物之间相对保守,同时又各具特性.  相似文献   

20.

Background  

Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号