首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly pathogenic H5N1 influenza viruses continue to cause concern, even though currently circulating strains are not efficiently transmitted among humans. For efficient transmission, amino acid changes in viral proteins may be required. Here, we examined the amino acids at positions 627 and 701 of the PB2 protein. A direct analysis of the viral RNAs of H5N1 viruses in patients revealed that these amino acids contribute to efficient virus propagation in the human upper respiratory tract. Viruses grown in culture or eggs did not always reflect those in patients. These results emphasize the importance of the direct analysis of original specimens.Given the continued circulation of highly pathogenic H5N1 avian influenza viruses and their sporadic transmission to humans, the threat of a pandemic persists. However, for H5N1 influenza viruses to be efficiently transmitted among humans, amino acid substitutions in the avian viral proteins may be necessary.Two positions in the PB2 protein affect the growth of influenza viruses in mammalian cells (3, 11, 18): the amino acid at position 627 (PB2-627), which in most human influenza viruses is lysine (PB2-627Lys) and most avian viruses is glutamic acid (PB2-627Glu), and the amino acid at position 701. PB2-627Lys is associated with the efficient replication (16) and high virulence (5) of H5N1 viruses in mice. Moreover, an H7N7 avian virus isolated from a fatal human case of pneumonia possessed PB2-627Lys, whereas isolates from a nonfatal human case of conjunctivitis and from chickens during the same outbreak possessed PB2-627Glu (2).The amino acid at position 701 in PB2 is important for the high pathogenicity of H5N1 viruses in mice (11). Most avian influenza viruses possess aspartic acid at this position (PB2-701Asp); however, A/duck/Guangxi/35/2001 (H5N1), which is highly virulent in mice (11), possesses asparagine at this position (PB2-701Asn). PB2-701Asn is also found in equine (4) and swine (15) viruses, as well as some H5N1 human isolates (7, 9). Thus, both amino acids appear to be markers for the adaptation of H5N1 viruses in humans (1, 3, 17).Massin et al. (13) reported that the amino acid at PB2-627 affects viral RNA replication in cultured cells at low temperatures. Recently, we demonstrated that viruses, including those of the H5N1 subtype, with PB2-627Lys (human type) grow better at low temperatures in cultured cells than those with PB2-627Glu (avian type) (6). This association between the PB2 amino acid and temperature-dependent growth correlates with the body temperatures of hosts; the human upper respiratory tract is at a lower temperature (around 33°C) than the lower respiratory tract (around 37°C) and the avian intestine, where avian influenza viruses usually replicate (around 41°C). The ability to replicate at low temperatures may be crucial for viral spread among humans via sneezing and coughing by being able to grow in the upper respiratory organs. Therefore, the Glu-to-Lys mutation in PB2-627 is an important step for H5N1 viruses to develop pandemic potential.However, there is no direct evidence that the substitutions of PB2-627Glu with PB2-627Lys and PB2-701Asp with PB2-701Asn occur during the replication of H5N1 avian influenza viruses in human respiratory organs. Therefore, here, we directly analyzed the nucleotide sequences of viral genes from several original specimens collected from patients infected with H5N1 viruses.  相似文献   

2.
PB1-F2 is a viral protein that is encoded by the PB1 gene of influenza A virus by alternative translation. It varies in length and sequence context among different strains. The present study examines the functions of PB1-F2 proteins derived from various human and avian viruses. While H1N1 PB1-F2 was found to target mitochondria and enhance apoptosis, H5N1 PB1-F2, surprisingly, did not localize specifically to mitochondria and displayed no ability to enhance apoptosis. Introducing Leu into positions 69 (Q69L) and 75 (H75L) in the C terminus of H5N1 PB1-F2 drove 40.7% of the protein to localize to mitochondria compared with the level of mitochondrial localization of wild-type H5N1 PB1-F2, suggesting that a Leu-rich sequence in the C terminus is important for targeting of mitochondria. However, H5N1 PB1-F2 contributes to viral RNP activity, which is responsible for viral RNA replication. Lastly, although the swine-origin influenza virus (S-OIV) contained a truncated form of PB1-F2 (12 amino acids [aa]), potential mutation in the future may enable it to contain a full-length product. Therefore, the functions of this putative S-OIV PB1-F2 (87 aa) were also investigated. Although this PB1-F2 from the mutated S-OIV shares only 54% amino acid sequence identity with that of seasonal H1N1 virus, it also increased viral RNP activity. The plaque size and growth curve of the viruses with and without S-OIV PB1-F2 differed greatly. The PB1-F2 protein has various lengths, amino acid sequences, cellular localizations, and functions in different strains, which result in strain-specific pathogenicity. Such genetic and functional diversities make it flexible and adaptable in maintaining the optimal replication efficiency and virulence for various strains of influenza A virus.Influenza A viruses contain eight negative-stranded RNA segments that encode 11 known viral proteins. The 11th viral protein was originally found in a search for unknown peptides during influenza A virus infection recognized by CD8+ T cells. It was termed PB1-F2 and is the second protein that is alternatively translated by the same PB1 gene (8). PB1-F2 can be encoded in a large number of influenza A viruses that are isolated from various hosts, including human and avian hosts. The size of PB1-F2 ranges from 57 to 101 amino acids (aa) (41). While strain PR8 (H1N1) contains a PB1-F2 with a length of 87 aa, PB1-F2 is terminated at amino acid position 57 in most human H1N1 viruses and is thus a truncated form compared with the length in PR8. Human H3N2 and most avian influenza A viruses encode a full-length PB1-F2 protein, which is at least 87 aa (7). Many cellular functions of the PB1-F2 protein, and especially the protein of the PR8 strain, have been reported (11, 25). For example, PR8 PB1-F2 localizes to mitochondria in infected and transfected cells (8, 15, 38, 39), suggesting that PB1-F2 enhances influenza A virus-mediated apoptosis in human monocytes (8). The phosphorylation of the PR8 PB1-F2 protein has been suggested to be one of the crucial causes of the promotion of apoptosis (30).The rates of synonymous and nonsynonymous substitutions in the PB1-F2 gene are higher than those in the PB1 gene (7, 20, 21, 37, 42). Recent work has shown that both PR8 PB1-F2 and H5N1 PB1-F2 are important regulators of influenza A virus virulence (1). Additionally, the expression of the 1918 influenza A virus (H1N1) PB1-F2 increases the incidence of secondary bacterial pneumonia (10, 28). However, PB1-F2 is not essential for viral replication because the knockout of PB1-F2 in strain PR8 has no effect on the viral titer (40), suggesting that PB1-F2 may have cellular functions other than those that were originally thought (29).PB1-F2 was translated from the same RNA segment as the PB1 protein, whose function is strongly related to virus RNP activity, which is responsible for RNA chain elongation and which exhibits RNA-dependent RNA polymerase activity (2, 5) and endonuclease activity (9, 16, 26). Previous research has already proved that the knockout of PR8 PB1-F2 reduced virus RNP activity, revealing that PR8 PB1-F2 contributes to virus RNP activity (27), even though PB1-F2 has no effect on the virus growth rate (40). In the present study, not only PR8 PB1-F2 but also H5N1 PB1-F2 and putative full-length swine-origin influenza A virus (S-OIV) PB1-F2 contributed to virus RNP activity. However, PR8 PB1-F2 and H5N1 PB1-F2 exhibit different biological behaviors, including different levels of expression, cellular localizations, and apoptosis enhancements. The molecular determinants of the different localizations were also addressed. The function of the putative PB1-F2 derived from S-OIV was also studied. The investigation described here reveals that PB1-F2 proteins derived from various viral strains exhibited distinct functions, possibly contributing to the variation in the virulence of influenza A viruses.  相似文献   

3.
4.
H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.Influenza pandemics occur when a novel influenza virus enters a population with little preexisting immunity (36). During the pandemics of the last century, novel influenza viruses were introduced either directly from an avian reservoir (34) or were the result of reassortment between contemporaneously circulating human, avian, and swine influenza viruses (5, 29, 36). Due to the lack of preexisting immunity to the novel virus, morbidity and mortality rates are typically higher than in epidemics caused by seasonal influenza viruses (4).Although pandemic preparedness planning has largely focused on the highly pathogenic H5 and H7 avian influenza virus subtypes, the recent emergence of the 2009 pandemic H1N1 viruses underscores the need to consider other influenza virus subtypes as well. Of the 16 hemagglutinin (HA) influenza A virus subtypes that have been identified to date, H1, H2, and H3 have been known to cause influenza pandemics (7, 27), suggesting that these viruses are capable of sustained transmission and can cause disease in humans. While the H1 and H3 subtypes have cocirculated in humans since 1977, H2 influenza viruses have not circulated in humans since 1968 (36) and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The 1957 H2 pandemic virus was a reassortant that derived the HA, neuraminidase (NA), and PB1 genes from an avian virus and the remaining gene segments from the circulating H1N1 virus (15, 30). As H2 subtype viruses continue to circulate in avian reservoirs worldwide (12, 17, 18, 22, 33), they remain a potential pandemic threat. The development of an H2 influenza virus vaccine candidate should therefore be considered a priority in future pandemic influenza preparedness planning.Given the low likelihood that a previously selected vaccine virus will exactly match the pandemic virus, the ability to elicit a broadly cross-reactive antibody response to antigenically distinct viruses within a subtype is an important consideration in the selection of a pandemic influenza vaccine candidate. Previous studies have examined the ability of inactivated H2 influenza viruses to provide cross-protection against mouse-adapted variants of reassortant human viruses and an avian H2 influenza virus from 1978 (9, 14). Given the potential for live attenuated influenza virus vaccines to confer a great breadth of heterologous cross-protection (1, 2, 6, 35), we recently conducted a study evaluating cold-adapted A/Ann Arbor/6/1960 (AA CA), an H2 influenza virus used as the backbone of the seasonal live attenuated influenza A virus vaccine currently licensed in the United States (3). However, as H2 influenza virus continues to circulate widely and appear in migratory birds (10, 24, 26), in poultry markets (20), and in swine (21), with evidence of interregional gene transmission (19, 22), a more extensive evaluation of recent isolates may be warranted in the selection of a potential H2 pandemic vaccine candidate.H2 influenza viruses fall into three main lineages: a human lineage, a North American avian lineage, and a Eurasian avian lineage (29). In addition to viruses whose replicative ability in mammals has previously been established (11, 21, 23, 25), we selected a group of geographically and temporally diverse H2 influenza viruses from each lineage. We evaluated the kinetics of replication of each of these viruses in mice and ferrets and compared the abilities of these viruses to induce a broadly cross-reactive antibody response to determine which of these viruses would be suitable for further development as an H2 pandemic influenza vaccine candidate.  相似文献   

5.
6.
Many novel reassortant influenza viruses of the H9N2 genotype have emerged in aquatic birds in southern China since their initial isolation in this region in 1994. However, the genesis and evolution of H9N2 viruses in poultry in eastern China have not been investigated systematically. In the current study, H9N2 influenza viruses isolated from poultry in eastern China during the past 10 years were characterized genetically and antigenically. Phylogenetic analysis revealed that these H9N2 viruses have undergone extensive reassortment to generate multiple novel genotypes, including four genotypes (J, F, K, and L) that have never been recognized before. The major H9N2 influenza viruses represented by A/Chicken/Beijing/1/1994 (Ck/BJ/1/94)-like viruses circulating in poultry in eastern China before 1998 have been gradually replaced by A/Chicken/Shanghai/F/1998 (Ck/SH/F/98)-like viruses, which have a genotype different from that of viruses isolated in southern China. The similarity of the internal genes of these H9N2 viruses to those of the H5N1 influenza viruses isolated from 2001 onwards suggests that the Ck/SH/F/98-like virus may have been the donor of internal genes of human and poultry H5N1 influenza viruses circulating in Eurasia. Experimental studies showed that some of these H9N2 viruses could be efficiently transmitted by the respiratory tract in chicken flocks. Our study provides new insight into the genesis and evolution of H9N2 influenza viruses and supports the notion that some of these viruses may have been the donors of internal genes found in H5N1 viruses.Wild birds, including wild waterfowls, gulls, and shorebirds, are the natural reservoirs for influenza A viruses, in which they are thought to be in evolutionary stasis (2, 33). However, when avian influenza viruses are transmitted to new hosts such as terrestrial poultry or mammals, they evolve rapidly and may cause occasional severe systemic infection with high morbidity (20, 29). Despite the fact that avian influenza virus infection occurs commonly in chickens, it is unable to persist for a long period of time due to control efforts and/or a failure of the virus to adapt to new hosts (29). In the past 20 years, greater numbers of outbreaks in poultry have occurred, suggesting that the avian influenza virus can infect and spread in aberrant hosts for an extended period of time (5, 14-16, 18, 32).During the past 10 years, H9N2 influenza viruses have become panzootic in Eurasia and have been isolated from outbreaks in poultry worldwide (3, 5, 11, 14-16, 18, 24). A great deal of previous studies demonstrated that H9N2 influenza viruses have become established in terrestrial poultry in different Asian countries (5, 11, 13, 14, 18, 21, 24, 35). In 1994, H9N2 viruses were isolated from diseased chickens in Guangdong province, China, for the first time (4), and later in domestic poultry in other provinces in China (11, 16, 18, 35). Two distinct H9N2 virus lineages represented by A/Chicken/Beijing/1/94 (H9N2) and A/Quail/Hong Kong/G1/98 (H9N2), respectively, have been circulating in terrestrial poultry of southern China (9). Occasionally these viruses expand their host range to other mammals, including pigs and humans (6, 17, 22, 34). Increasing epidemiological and laboratory findings suggest that chickens may play an important role in expanding the host range for avian influenza virus. Our systematic surveillance of influenza viruses in chickens in China showed that H9N2 subtype influenza viruses continued to be prevalent in chickens in mainland China from 1994 to 2008 (18, 19, 36).Eastern China contains one metropolitan city (Shanghai) and five provinces (Jiangsu, Zhejiang, Anhui, Shandong, and Jiangxi), where domestic poultry account for approximately 50% of the total poultry population in China. Since 1996, H9N2 influenza viruses have been isolated regularly from both chickens and other minor poultry species in our surveillance program in the eastern China region, but their genetic diversity and the interrelationships between H9N2 influenza viruses and different types of poultry have not been determined. Therefore, it is imperative to explore the evolution and properties of these viruses. The current report provides insight into the genesis and evolution of H9N2 influenza viruses in eastern China and presents new evidence for the potential crossover between H9N2 and H5N1 influenza viruses in this region.  相似文献   

7.
The ectopic overexpression of Bcl-2 restricts both influenza A virus-induced apoptosis and influenza A virus replication in MDCK cells, thus suggesting a role for Bcl-2 family members during infection. Here we report that influenza A virus cannot establish an apoptotic response without functional Bax, a downstream target of Bcl-2, and that both Bax and Bak are directly involved in influenza A virus replication and virus-induced cell death. Bak is substantially downregulated during influenza A virus infection in MDCK cells, and the knockout of Bak in mouse embryonic fibroblasts yields a dramatic rise in the rate of apoptotic death and a corresponding increase in levels of virus replication, suggesting that Bak suppresses both apoptosis and the replication of virus and that the virus suppresses Bak. Bax, however, is activated and translocates from the cytosol to the mitochondria; this activation is required for the efficient induction of apoptosis and virus replication. The knockout of Bax in mouse embryonic fibroblasts blocks the induction of apoptosis, restricts the infection-mediated activation of executioner caspases, and inhibits virus propagation. Bax knockout cells still die but by an alternative death pathway displaying characteristics of autophagy, similarly to our previous observation that influenza A virus infection in the presence of a pancaspase inhibitor leads to an increase in levels of autophagy. The knockout of Bax causes a retention of influenza A virus NP within the nucleus. We conclude that the cell and virus struggle to control apoptosis and autophagy, as appropriately timed apoptosis is important for the replication of influenza A virus.The pathology of influenza A virus infection usually arises from acute lymphopenia and inflammation of the lungs and airway columnar epithelial cells (23, 38). Influenza A virus induces apoptotic death in infected epithelial, lymphocyte, and phagocytic cells, and apoptosis is a source of tissue damage during infection (3, 22, 33) and increased susceptibility to bacterial pathogens postinfection (31). While the induction of apoptosis by influenza A virus has been well documented (4, 19-21, 28, 33, 37), the mechanisms of this interaction are not well understood. Two viral proteins, NS1 and PB1-F2, have been associated with viral killing of cells. NS1, originally characterized as being proapoptotic (34), was later identified as being an interferon antagonist, inhibiting the activation of several key antiviral responses and restricting the apoptotic response to infection (1, 10, 15, 18, 35, 39, 46). In contrast, PB1-F2 induces apoptosis primarily by localizing to the outer mitochondrial membrane, promoting cytochrome c release, and triggering the apoptotic cascade (43). This effect, however, is typically restricted to infected monocytes, leading to the hypothesis that PB1-F2 induces apoptosis specifically to clear the landscape of immune responders (5, 44). Although PB1-F2 activity does not directly manipulate virus replication or virus-induced apoptosis, PB1-F2 localization to the mitochondrial membrane during infection potentiates the apoptotic response in epithelial and fibroblastic cells through tBID signaling with proapoptotic Bcl-2 family protein members Bax and Bak (22, 43, 44).The Bcl-2 protein family consists of both pro- and antiapoptotic members that regulate cytochrome c release during mitochondrion-mediated apoptosis through the formation of pore-like channels in the outer mitochondrial membrane (12, 16). During the initiation of mitochondrion-mediated apoptosis, cytoplasmic Bid is cleaved to form tBID. This, in turn, activates proapoptotic Bax and Bak (40), which drive cytochrome c release and subsequent caspase activation. Bak is constitutively associated with the mitochondrial membrane, whereas inactive Bax is primarily cytosolic, translocating to the outer mitochondrial membrane only after activation (6). The activation of Bax and Bak results in homo- and heterodimer formation at the outer mitochondrial membrane, generating pores that facilitate mitochondrial membrane permeabilization and cytochrome c release (14, 17), leading to caspase activation and the apoptotic cascade (8). Antiapoptotic members of the Bcl-2 protein family, including Bcl-2, inhibit the activation of proapoptotic Bax and Bak primarily by sequestering inactive Bax and Bak monomers via interactions between their BH3 homology domains (7).Bcl-2 expression has been linked to decreased viral replication rates (26). Bcl-2 overexpression inhibits influenza A virus-induced cell death and reduces the titer and spread of newly formed virions (29). The activation of caspase-3 in the absence of sufficient Bcl-2 is critical to the influenza A virus life cycle. Both Bcl-2 expression and the lack of caspase activation during infection lead to the nuclear accumulation of influenza virus ribonucleoprotein (RNP) complexes, thereby leading to the improper assembly of progeny virions and a marked reduction in titers of infectious virus (26, 41, 42, 45).Here we show that influenza A virus induces mitochondrion-mediated (intrinsic-pathway) apoptosis signaled specifically through Bax and that this Bax signaling is essential for the maximum efficiency of virus propagation. In contrast, Bak expression is strongly downregulated during infection. Cells lacking Bak (while expressing Bax) display a much more severe apoptotic phenotype in response to infection and produce infectious virions at a higher rate than the wild type (WT), suggesting that Bak, which can suppress viral replication, is potentially downregulated by the virus. Our results indicate essential and opposing roles for Bax and Bak in both the response of cells to influenza A virus infection and the ability of the virus to maximize its own replicative potential.  相似文献   

8.
9.
Adaptation of influenza A viruses to a new host species usually involves the mutation of one or more of the eight viral gene segments, and the molecular basis for host range restriction is still poorly understood. To investigate the molecular changes that occur during adaptation of a low-pathogenic avian influenza virus subtype commonly isolated from migratory birds to a mammalian host, we serially passaged the avirulent wild-bird H5N2 strain A/Aquatic bird/Korea/W81/05 (W81) in the lungs of mice. The resulting mouse-adapted strain (ma81) was highly virulent (50% mouse lethal dose = 2.6 log10 50% tissue culture infective dose) and highly lethal. Nonconserved mutations were observed in six viral genes (those for PB2, PB1, PA, HA, NA, and M). Reverse genetic experiments substituting viral genes and mutations demonstrated that the PA gene was a determinant of the enhanced virulence in mice and that a Thr-to-Iso substitution at position 97 of PA played a key role. In growth kinetics studies, ma81 showed enhanced replication in mammalian but not avian cell lines; the PA97I mutation in strain W81 increased its replicative fitness in mice but not in chickens. The high virulence associated with the PA97I mutation in mice corresponded to considerably enhanced polymerase activity in mammalian cells. Furthermore, this characteristic mutation is not conserved among avian influenza viruses but is prevalent among mouse-adapted strains, indicating a host-dependent mutation. To our knowledge, this is the first study that the isoleucine residue at position 97 in PA plays a key role in enhanced virulence in mice and is implicated in the adaptation of avian influenza viruses to mammalian hosts.Migratory waterfowl are the natural reservoir of influenza A viruses (11, 53). The viruses replicate efficiently in their natural hosts but replicate poorly if at all in other species (53). However, these viruses can undergo adaptation or genetic reassortment to infect other hosts (43, 44, 53), including humans. Since 1997, the World Health Organization has documented more than 400 laboratory-confirmed cases of human infection with H5N1 avian influenza virus (54).The molecular basis of influenza virus host range restriction and adaptation to a new host species is poorly understood. Mutations associated with cross-species adaptation are thought to be associated with increased virulence (30). Therefore, studies in animal models have attempted to identify the viral molecular determinants of virulence in specific hosts. Reverse genetics (Rg) methods have also identified genetic differences that affect virus virulence and host range, including changes in the viral internal proteins. Experimental infection of mouse lungs is an effective approach for understanding influenza virus virulence and adaptation (reviewed by A. C. Ward [51]). To acquire virulence in mice, influenza A viruses usually must adapt to these hosts over several consecutive generations (serial passages) in the lungs or brain (1, 25, 30). Previous studies have found that the acquisition of virulence during adaptation in the mouse model is associated with mutations in the HA, NP, NA, M, and NS genes and one or more polymerase genes (2, 3, 18, 36, 42, 51). The polymerase basic protein 2 (PB2) gene is a particularly well-characterized polymerase subunit (7, 23, 40, 46). The PB1 and polymerase acidic protein (PA) genes have been implicated in mouse lung virulence (5, 18, 36, 39, 49) but have shown no evidence of having acquired mutations during adaptation (52). However, the many studies conducted to date have focused mainly on highly pathogenic avian influenza (HPAI) viruses such as the H1N1, H5N1, and H7N7 subtypes (7, 23, 48, 50).Various low-pathogenic avian influenza (LPAI) viruses are considered to be potential genetic contributors to the next pandemic strain. Lee et al. (2009) recently reported the presence of avian-like LPAI H5N2 viruses in a number of Korean swine and proposed that the efficient transmissibility of the swine-adapted H5N2 virus could facilitate spread of the virus. They suggested that this adapted virus could potentially serve as a model for pandemic outbreaks of HPAI (e.g., H5N1 and H7N7) virus or could become a pandemic strain itself (21). These findings prompted our interest in the adaptation of an LPAI virus often harbored by wild migratory birds of South Korea. In our ongoing surveillance from 2004 to 2008, approximately 27% of the viruses isolated were of the H5N2 subtype (unpublished data). Studies show that influenza viruses with different genetic backgrounds can acquire different mutations during adaptation in mice. Therefore, we sought to determine whether this common H5N2 virus (nonlethal in mice) would undergo changes different from those observed in highly virulent viruses during adaptation in mice. Wild-bird influenza virus strain A/Aquatic bird/Korea/W81/05 (W81) was adapted in mice over 11 passages and became highly virulent. To identify molecular determinants of this adaptation and altered virulence, we used Rg-generated recombinant viruses to compare the parental and mouse-adapted strains. Here we show that the PA subunit of the polymerase complex, independently of PB2, contributed to adaptation and increased virulence in our mammalian model.  相似文献   

10.
Avian H7 influenza viruses have been responsible for poultry outbreaks worldwide and have resulted in numerous cases of human infection in recent years. The high rate of conjunctivitis associated with avian H7 subtype virus infections may represent a portal of entry for avian influenza viruses and highlights the need to better understand the apparent ocular tropism observed in humans. To study this, mice were inoculated by the ocular route with viruses of multiple subtypes and degrees of virulence. We found that in contrast to human (H3N2 and H1N1) viruses, H7N7 viruses isolated from The Netherlands in 2003 and H7N3 viruses isolated from British Columbia, Canada, in 2004, two subtypes that were highly virulent for poultry, replicated to a significant titer in the mouse eye. Remarkably, an H7N7 virus, as well as some avian H5N1 viruses, spread systemically following ocular inoculation, including to the brain, resulting in morbidity and mortality of mice. This correlated with efficient replication of highly pathogenic H7 and H5 subtypes in murine corneal epithelial sheets (ex vivo) and primary human corneal epithelial cells (in vitro). Influenza viruses were labeled to identify the virus attachment site in the mouse cornea. Although we found abundant H7 virus attachment to corneal epithelial tissue, this did not account for the differences in virus replication as multiple subtypes were able to attach to these cells. These findings demonstrate that avian influenza viruses within H7 and H5 subtypes are capable of using the eye as a portal of entry.Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have resulted in over 420 documented cases of human infection to date, have generally caused acute, often severe and fatal, respiratory illness (1, 50). While conjunctivitis following infection with H5N1 or human influenza viruses has been rare, most human infections associated with H7 subtype viruses have resulted in ocular and not respiratory disease (1, 9, 37, 38). Infrequent reports of human conjunctivitis infection following exposure to H7 influenza viruses date from 1977, predominantly resulting from laboratory or occupational exposure (21, 40, 48). However, in The Netherlands in 2003, more than 80 human infections with H7N7 influenza virus occurred among poultry farmers and cullers amid widespread outbreaks of HPAI in domestic poultry; the majority of these human infections resulted in conjunctivitis (14, 20). Additionally, conjunctivitis was documented in the two human infections resulting from an H7N3 outbreak in British Columbia, Canada, in 2004, as well as in H7N3- and H7N2-infected individuals in the United Kingdom in 2006 and 2007, respectively (13, 18, 29, 46, 51). The properties that contribute to an apparent ocular tropism of some influenza viruses are currently not well understood (30).Host cell glycoproteins bearing sialic acids (SAs) are the cellular receptors for influenza viruses and can be found on epithelial cells within both the human respiratory tract and ocular tissue (26, 31, 41). Both respiratory and ocular tissues additionally secrete sialylated mucins that function in pathogen defense and protection of the epithelial surface (5, 11, 22). Within the upper respiratory tract, α2-6-linked SAs (the preferred receptor for human influenza viruses) predominate on epithelial cells (26). While α2-3-linked SAs are also present to a lesser degree on respiratory epithelial cells, this linkage is more abundantly expressed on secreted mucins (2). In contrast, α2-3-linked SAs (the preferred receptor for avian influenza viruses) are found on corneal and conjunctival epithelial cells of the human eye (31, 41), while secreted ocular mucins are abundantly composed of α2-6 SAs (5). It has been suggested that avian influenza viruses are more suited to infect the ocular surface due to their general α2-3-linked SA binding preference, but this has not been demonstrated experimentally (30).The mouse model has been used previously to study the role of ocular exposure to respiratory viruses (6, 39). In mice, ocular inoculation with an H3N2 influenza virus resulted in virus replication in nasal turbinates and lung (39), whereas ocular infection with respiratory syncytial virus (RSV) resulted in detectable virus titers in the eye and lung (6). These studies have revealed that respiratory viruses are not limited to the ocular area following inoculation at this site. However, the ability of influenza viruses to replicate specifically within ocular tissue has not been examined.Despite repeated instances of conjunctivitis associated with H7 subtype infections in humans, the reasons for this apparent ocular tropism have not been studied extensively. Here, we present a murine model to study the ability of human and avian influenza viruses to cause disease by the ocular route. We found that highly pathogenic H7 and H5 influenza viruses were capable of causing a systemic and lethal infection in mice following ocular inoculation. These highly pathogenic viruses, unlike human H3N2 and H1N1 viruses, replicated to significant titers in the mouse corneal epithelium and primary human corneal epithelial cells (HCEpiCs). Identification of viruses well suited to infecting the ocular surface is the first step in better understanding the ability of influenza viruses of multiple subtypes to use this tissue as a portal of entry.  相似文献   

11.
The RNA polymerase of influenza A virus is a host range determinant and virulence factor. In particular, the PB2 subunit of the RNA polymerase has been implicated as a crucial factor that affects cell tropism as well as virulence in animal models. These findings suggest that host factors associating with the PB2 protein may play an important role during viral replication. In order to identify host factors that associate with the PB2 protein, we purified recombinant PB2 from transiently transfected mammalian cells and identified copurifying host proteins by mass spectrometry. We found that the PB2 protein associates with the cytosolic chaperonin containing TCP-1 (CCT), stress-induced phosphoprotein 1 (STIP1), FK506 binding protein 5 (FKBP5), α- and β-tubulin, Hsp60, and mitochondrial protein p32. Some of these binding partners associate with each other, suggesting that PB2 might interact with these proteins in multimeric complexes. More detailed analysis of the interaction of the PB2 protein with CCT revealed that PB2 associates with CCT as a monomer and that the CCT binding site is located in a central region of the PB2 protein. PB2 proteins from various influenza virus subtypes and origins can associate with CCT. Silencing of CCT resulted in reduced viral replication and reduced PB2 protein and viral RNA accumulation in a ribonucleoprotein reconstitution assay, suggesting an important function for CCT during the influenza virus life cycle. We propose that CCT might be acting as a chaperone for PB2 to aid its folding and possibly its incorporation into the trimeric RNA polymerase complex.Influenza A viruses, members of the family of Orthomyxoviridae, contain a segmented RNA genome of negative polarity. The genomic RNA segments together with the three subunits of the viral RNA-dependent RNA polymerase (PB1, PB2, and PA protein) and the nucleoprotein (NP) form viral ribonucleoprotein complexes (vRNPs). The PB1 subunit is the polymerase itself, while the PB2 and PA subunits are involved in the generation of 5′ capped RNA primers through binding to and endonucleolytic cleavage of host pre-mRNAs (8, 10, 11, 41, 61). After the virus enters the cell via endocytosis, vRNPs are released into the cytoplasm and transported into the nucleus. In the nucleus, vRNPs catalyze the synthesis of viral mRNAs and complementary RNAs (cRNA) which, in turn, are used as templates for the synthesis of vRNAs. The newly formed vRNPs in association with other viral proteins (M1 and nonstructural protein 2/nuclear export factor [NS2/NEP]) are transported into the cytoplasm and subsequently to the cell membrane, where the assembly process takes place, followed by the release of progeny virions by budding (44).The PB1, PB2, and PA proteins are synthesized in the cytoplasm whereupon PB1 and PA form a dimeric complex that is transported into the nucleus. In the nucleus the dimer assembles with the PB2 subunit, which is transported separately (7, 14). RanBP5 was identified as a factor that is involved in the import of the PB1-PA dimer into the nucleus (6), while PB2 uses the classical importin-α/β pathway for nuclear import (57). Recently, further support for this transport and assembly model was provided by using fluorescence cross-correlation spectroscopy (25). An alternative pathway proposed for the import of the RNA polymerase subunits into the nucleus involves the heat shock protein 90 (Hsp90) that was shown to interact with the PB1 and PB2 proteins (39). Heat shock protein 70 (Hsp70) was also found to interact with the influenza virus polymerase subunits and vRNPs, and it was implicated in blocking the nuclear export of vRNPs (22).The RNA polymerase has been implicated as a host range determinant and pathogenicity factor of influenza viruses. In particular, amino acid residue 627 in the PB2 subunit was shown to determine the ability of certain influenza viruses to replicate in avian and mammalian cells (34, 54). A lysine at position 627, characteristic of most human influenza virus strains, appears to enhance replication in mammalian cells, while a glutamic acid, found in most avian isolates, attenuates virus replication in mammalian cells. The presence of a lysine was also shown to enhance virulence in mammalian models and has been associated with the lethality of H5N1 viruses in humans (20). It has been proposed that a negative factor, present in mammalian cells, specifically reduces the activity of a polymerase containing a glutamic acid (38). However, the identity of this factor remains to be determined. Interestingly, the 2009 H1N1 pandemic influenza virus encodes a glutamic acid at this position, and a second-site suppressor mutation has been identified in PB2 that promotes activity in mammalian cells (37). Introduction of a lysine at residue 627 in the 2009 H1N1 pandemic virus did not result in enhanced virulence (21, 62). Several other amino acid residues in the PB2 protein were also implicated in host range determination and virulence, suggesting that multiple amino acid substitutions are involved (15, 48). Collectively, these results suggest that the PB2 protein interacts with host factors and that these interactions have implications for host range and virulence.Therefore, we set up a biochemical copurification assay followed by mass spectrometry to identify host factors that associate with the PB2 protein in mammalian cells. We confirmed the interaction with several previously identified host factors, e.g., Hsp70 and Hsp90, and identified novel host proteins that interact with the PB2 protein. Among these, we have identified the oligomeric chaperonin containing TCP-1 (CCT) (also known as TRiC [TCP-1 ring complex]) and investigated the significance of this interaction in more detail. We found that CCT interacts with the PB2 protein but not with the PB1 or PA protein. However, PB2 in association with PB1 or PB1 and PA did not interact with CCT. We also found that PB2 proteins of different influenza virus strains of different origins, hosts, and subtypes interact with CCT. Growth of influenza virus, as well as the accumulation of the PB2 protein and viral RNAs in a ribonucleoprotein reconstitution assay, was reduced in CCT-silenced cells compared to that in control cells. These results suggest a role for CCT in the influenza A virus life cycle, possibly acting as a chaperone for the PB2 protein.  相似文献   

12.
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.Highly pathogenic avian influenza (HPAI) is an extremely infectious, systemic viral disease that causes a high rate of mortality in birds. HPAI H5N1 viruses are now endemic in avian populations in Southeast Asia and have repeatedly been transmitted to humans (9, 14, 27). Since 2003, the H5N1 subtype has been reported in 391 human cases of influenza and has caused 247 human deaths in 15 countries, leading to greater than 60% mortality among infected individuals (38). Although currently incapable of sustained human-to-human transmission, H5N1 viruses undoubtedly pose a serious threat to public health, as well as to the global economy. Hence, preparedness for such a threat is a global priority (36).Wild birds are considered to be natural reservoirs for influenza A viruses (6, 18, 21, 35, 37). Of the 144 type A influenza virus hemagglutinin-neuraminidase (HA-NA) combinations, 103 have been found in wild birds (5, 7, 17, 37). Since the first HPAI outbreak among migratory wild birds appeared at Qinghai Lake in western China in May 2005 (3, 16, 25, 34, 41), HPAI viruses of the H5N1 subtype have been isolated from poultry throughout Eurasia and Africa. The continued occurrence of human cases has created a situation that could facilitate a pandemic emergence. There is heightened concern that wild birds are a reservoir for influenza A viruses that switch hosts and stably adapt to mammals, including horses, swine, and humans (11, 19, 22, 37).Despite the recent expansion of avian influenza virus (AIV) surveillance and genomic data (5, 17, 20, 21, 33, 40), fundamental questions remain concerning the ecology and evolution of these viruses. Little is known about how terrestrial wild mammals within their natural ecological systems affect HPAI H5N1 epidemiology or about the virus''s effects on public health, though there are many reports of natural and experimental H5N1 virus infection in animals belonging to the taxonomic orders Carnivora (12, 13, 15, 28, 29) and Artiodactyla (15). Herein, we provide the results of our investigation into H5N1 virus infection in wild pikas (Ochotona curzoniae of the order Lagomorpha) within their natural ecological setting. We describe our attempt to trace the circulation of H5N1 viruses and to characterize pika H5N1 influenza virus (PK virus).  相似文献   

13.
Influenza virus genomic RNAs possess segment-specific packaging signals that include both noncoding regions (NCRs) and adjacent terminal coding region sequences. Using reverse genetics, an A/Puerto Rico/8/34 (A/PR/8/34) virus was rescued that contained a modified PB1 gene such that the PB1 packaging sequences were exchanged for those of the neuraminidase (NA) gene segment. To accomplish this, the PB1 open reading frame, in which the terminal packaging signals were inactivated by serial synonymous mutations, was flanked by the NA segment-specific packaging sequences including the NCRs and the coding region packaging signals. Next, the ATGs located on the 3′ end of the NA packaging sequences of the resulting PB1 chimeric segment were mutated to allow for correct translation of the full-length PB1 protein. The virus containing this chimeric PB1 segment was viable and able to stably carry a ninth, green fluorescent protein (GFP), segment flanked by PB1 packaging signals. Utilizing this method, we successfully generated an influenza virus that contained the genes coding for both the H1 hemagglutinin (HA) from A/PR/8/34 and the H3 HA from A/Hong Kong/1/68 (A/HK/1/68); both subtypes of HA protein were also incorporated into the viral envelope. Immunization of mice with this recombinant virus conferred complete protection from lethal challenge with recombinant A/PR/8/34 virus and with X31 virus that expresses the A/HK/1/68 HA and NA. Using the described methodology, we show that a ninth segment can also be incorporated by manipulation of the PB2 or PA segment-specific packaging signals. This approach offers a means of generating a bivalent influenza virus vaccine.Influenza viruses possess segmented, negative-sense RNA genomes and belong to the family of Orthomyxoviridae. Three types of influenza viruses have been identified: A, B, and C (24). Based on the two surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), type A viruses are further divided into different subtypes; there are now 16 HA subtypes (H1 to H16) and 9 NA subtypes (N1 to N9) of influenza A viruses (24). Current influenza A viruses circulating in humans include the H1N1 and H3N2 subtypes.The genomes of influenza A and B viruses consist of eight RNAs, while C viruses have only seven segments. Influenza virus genomic RNAs associate with nucleoprotein (NP) and three viral polymerase subunits (PB2, PB1, and PA), to form the ribonucleoprotein (RNP) complexes within virions (24). Previous data indicated that each segment of the influenza A/WSN/33 (H1N1) virus possesses segment-specific RNA packaging signals that include both the 3′ and 5′ noncoding regions (NCRs), as well as coding sequences at the two ends of each open reading frame (ORF) (4, 5, 10, 11, 13, 15, 22, 23, 28; and see Fig. 47.23 in reference 24). In addition, an electron microscopy study showed that the wild-type influenza A virus contains exactly eight RNPs within the virions, with seven RNPs surrounding a central one (19). These results suggest that influenza virus genome packaging is a specific process, with each particle containing eight unique RNA segments. Additional evidence supporting a specific packaging theory came from studies of defective interfering (DI) RNAs which contain internal deletions in the coding sequences. These short RNAs can be incorporated into the virus particles despite the fact that they do not encode full-length functional proteins. The finding that incorporation of DI RNAs interferes with the parent full-length RNAs in a segment-specific manner (1, 16, 17) also suggests that influenza virus genome packaging is a specific process.However, there are also data arguing that influenza virus RNA packaging can be nonspecific. First, studies showed that the two different RNA segments of influenza virus can be engineered to share the same set of 3′ and 5′ NCRs, which are important components of the influenza virus RNA packaging signals (18, 31). In addition, under specific circumstances, influenza virus is able to contain nine RNA segments, in which two of them share identical NCRs and partially identical coding region sequences (2, 29). Titrations of the nine-segment virus revealed a linear relationship between dilutions and plaque numbers, suggesting an influenza virus virion can incorporate more than eight segments (2).Herein, we describe a novel approach for the generation of nine-segment influenza viruses based on the manipulation of the segment-specific packaging signals. When the packaging sequences of the PB1 (or PB2 or PA) segment were replaced by those of the NA segment, influenza A/PR/8/34 virus was able to stably incorporate a ninth segment flanked by the PB1 (or PB2 or PA) packaging signals. Using this property, we successfully generated influenza viruses encoding two full-length HA glycoproteins: a subtype H1 A/PR/8/34 HA and a subtype H3 A/HK/1/68 HA. Immunization of mice with the virus carrying two HAs protected them from the lethal challenge with either A/PR/8/34 or X31 virus, the latter of which carries the HA and NA genes of A/HK/1/68. This approach can be used to construct live attenuated influenza vaccine viruses targeting two heterologous strains.  相似文献   

14.
15.
16.
This study investigated whether transmissible H5 subtype human-avian reassortant viruses could be generated in vivo. To this end, ferrets were coinfected with recent avian H5N1 (A/Thailand/16/04) and human H3N2 (A/Wyoming/3/03) viruses. Genotype analyses of plaque-purified viruses from nasal secretions of coinfected ferrets revealed that approximately 9% of recovered viruses contained genes from both progenitor viruses. H5 and H3 subtype viruses, including reassortants, were found in airways extending toward and in the upper respiratory tract of ferrets. However, only parental H5N1 genotype viruses were found in lung tissue. Approximately 34% of the recovered reassortant viruses possessed the H5 hemagglutinin (HA) gene, with five unique H5 subtypes recovered. These H5 reassortants were selected for further studies to examine their growth and transmissibility characteristics. Five H5 viruses with representative reassortant genotypes showed reduced titers in nasal secretions of infected ferrets compared to the parental H5N1 virus. No transmission by direct contact between infected and naïve ferrets was observed. These studies indicate that reassortment between H5N1 avian influenza and H3N2 human viruses occurred readily in vivo and furthermore that reassortment between these two viral subtypes is likely to occur in ferret upper airways. Given the relatively high incidence of reassortant viruses from tissues of the ferret upper airway, it is reasonable to conclude that continued exposure of humans and animals to H5N1 alongside seasonal influenza viruses increases the risk of generating H5 subtype reassortant viruses that may be shed from upper airway secretions.Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have caused devastating outbreaks in avian species during the past decade. After emerging in the Guangdong province of China in 1996, H5N1 viruses have extended their geographic distribution from Asia into Europe and Africa (45, 51). Sporadic transmission of H5N1 viruses from infected birds to humans has resulted in over 380 laboratory-confirmed infections and a case fatality rate of ∼60% since 2003 (48). Currently circulating H5N1 viruses lack the ability to undergo efficient and sustained transmission among humans although instances of limited human-to-human transmission have been reported (13, 41). If H5N1 viruses were to acquire genetic changes that confer efficient transmissibility among humans, then another pandemic would likely occur.The pandemics of 1957 and 1968 highlight the importance of genetic reassortment between avian and human influenza viruses as a mechanism for the generation of human pandemic strains (15, 46, 47). The structural separation of the influenza virus genome into eight independent genes allows formation of hybrid progeny viruses during coinfections. The 1957 H2N2 and 1968 H3N2 pandemic viruses acquired the hemagglutinin (HA) and PB1 genes, with or without the neuraminidase (NA) gene, respectively, from an avian virus progenitor (14, 33). The remaining genes of these pandemic reassortants were derived from a contemporary human virus (14, 33). The host species in which such human pandemic strains were generated by reassortment between human and avian viruses is not known. However, coinfection of the same cell with both human and avian viruses must have occurred, even though human and avian influenza viruses have preferences for different sialic acid receptor structures present on cell surface glycoproteins and glycolipids (20, 30). The HA of human viruses preferentially binds α(2,6)-linked sialic acids while that of avian viruses preferentially bind α(2,3)-linked sialic acids (3, 12). Cells possessing both of these receptors could support coinfection of avian and human viruses, leading to reassortment.Human respiratory tract epithelial cells can possess surface glycans with α(2,3)- and α(2,6)-linked sialic acids and as such represent a potential host for the generation of avian-human reassortant viruses (24, 35). The general distribution of surface α(2,3)- and α(2,6)-linked sialic acids varies among cells of the human upper and lower respiratory tracts, which are anatomically separated by the larynx. Recent studies have shown that α(2,3)-linked sialic acids are present in tissues of the human lower respiratory tract (i.e., lung alveolar cells) (24, 35) as well as tissues of the human upper respiratory tract (24). Consistent with these findings, HPAI H5N1 viruses have been shown to attach to and infect tissues belonging to the lower respiratory tract (i.e., trachea, bronchi, and lung) (5, 25, 35, 40, 42, 43) as well as tissues belonging to the upper respiratory tract (i.e., nasopharyngeal, adenoid, and tonsillar) (25). Glycans with α(2,6)-linked sialic acids are more widespread on epithelial cells of the upper airways than lung alveoli (24, 35). In accordance, human seasonal influenza viruses preferentially attach to and infect cells of the upper respiratory tract (6, 25, 35, 43). If cells with both types of receptors are present in the human respiratory tract, simultaneous infection of a person with both human and avian viruses could generate reassortant viruses.Although viruses derived by reassortment between avian H5N1 and human H3N2 progenitors have been generated in vitro (17), reassortment between these avian and human strains in a coinfected mammalian host has not been shown. Furthermore, our knowledge of the genetic and phenotypic repertoire of such reassortants generated in vivo and their potential for transmission to uninfected hosts is limited (2, 17). In the present study, we used the ferret model to better understand the generation of reassortant viruses in a host coinfected with contemporary avian (H5N1) and human (H3N2) viruses and the extent to which such reassortants replicate and transmit from animal to animal. The domestic ferret (Mustela putoris) serves as an ideal small-animal model for influenza because ferrets are susceptible to human and avian influenza viruses, including HPAI H5N1 viruses, and reflect the relative transmissibility of human and avian influenza viruses in humans (9, 17, 18, 31, 36, 39, 53). Our study revealed that coinfection of ferrets reproducibly generated reassortant viruses that could be recovered from tissues within and extending toward the upper respiratory tract. Although H5 reassortant viruses were recovered from the upper airways, they displayed no transmissibility to contact ferrets, suggesting that additional functional changes are required for these viral subtypes to become pandemic within human populations.  相似文献   

17.
Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of α2-6 and α2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to α2-6- and α2-3-type receptors but retained substantial binding to specific O- and N-linked α2-3 glycans, including α2-3GalNAc and fucosylated α2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.Influenza A viruses are generally isolated and propagated in embryonated chicken eggs or in cultures of cells of mammalian origin. Human influenza viruses were previously noted to acquire mutations in the hemagglutinin (HA) gene upon isolation and culture in the allantoic sac of embryonated chicken eggs (herein simply referred to as “eggs”) compared to the sequences of those isolated in mammalian cell substrates (herein referred to as “cells”) (29, 30, 44, 53, 58). These mutations resulted in amino acid substitutions that were found to mediate receptor specificity changes and improved viral replication efficiency in eggs (37). In general, cell-grown viruses are assumed to be more similar than their egg-grown counterparts to the viruses present in respiratory secretions (30, 56). Since their emergence in 1968, influenza A (H3N2) viruses have evolved and adapted to the human host while losing their ability to be efficiently isolated and replicate in eggs, particularly after 1992 (37, 42, 48). The rate of isolation of H3N2 clinical specimens after inoculation into eggs can be up to ∼30 times lower than that in mammalian cell cultures, highlighting the strong selective pressure for the emergence of sequence variants (77).Virtually all influenza vaccines for human use were licensed decades ago by national regulatory authorities, which used a product manufactured from influenza viruses isolated and propagated exclusively in eggs; therefore, cell culture isolates have been unacceptable for this purpose (41, 71). The antigen composition of influenza vaccines requires frequent updates (every 2 years, on average) to closely match their antigenic properties to the most prevalent circulating antigenic drift variant viruses (51). The limited availability of H3N2 viruses isolated in eggs has on one or more occasions delayed vaccine composition updates and may have reduced the efficacy of vaccination against new antigenically drifted viruses (3, 34, 37).Entry of influenza viruses into host cells is mediated by HA, which binds to sialic acid containing glycoconjugates on the surface of epithelial cells in the upper respiratory tract (2, 13). The nature of the linkage between sialic acid and the vicinal sugar (usually galactose) varies in different host species and tissues and may therefore determine whether an influenza virus binds to and infects avian or human cells (40, 46, 59, 62, 72-75). Human influenza viruses preferentially bind to α2-6-linked sialic acids, and avian viruses predominantly bind to α2-3-linked sialic acids (59). Previous studies with chicken embryo chorioallantoic membranes revealed differential lectin binding, suggesting that α2-3-linked but not α2-6-linked sialosides are present on the epithelial cells (28). Human H3N2 viruses isolated in cell culture were reported to bind with a high affinity to α2-6-linked sialosides, while viruses isolated in eggs often had increased specificity for α2-3-linked sialosides (19, 20, 28). The functional classification of avian and mammalian influenza virus receptors is further complicated since in vitro and tissue-binding assays have led to new working hypotheses involving glycan chain length, topology, and the composition of the inner fragments of the carbohydrate chain as additional receptor specificity determinants (9, 17, 65, 66, 82). However, the significance of these in vitro properties remains unknown, since the structures of the natural sialosides on host cells that are used for infectious virus entry are undefined.The techniques most widely used to study the interactions of the influenza virus with host cell receptors employ animal cells in various assay formats (36, 57, 59, 64, 69). To overcome the problems of cell-based techniques, new assays that rely on labeled sialyl-glycoproteins or polymeric sialoglycans have been developed (18). However, these assays are limited by having only a few glycans available in polymeric form and offer low throughput. In contrast, glycan microarrays can assess virus binding to multiple well-defined glycans simultaneously. Previous work with influenza live or β-propiolactone (BPL)-inactivated virions as well as recombinantly produced HAs revealed a good correlation with receptor specificity compared to that achieved by other methods of analysis (4, 11, 57, 58, 65-68).Here we have compared paired isolates derived in eggs or cell cultures from the single clinical specimen to better understand their receptor binding specificity and its implications for vaccine production. We examined the differences in the sequences of the HAs between egg- and cell-grown isolates and analyzed their receptor binding profiles using glycan microarrays. Sequence analysis of the HA and glycan binding results revealed two distinct groups of viruses, with many egg isolates showing unexpectedly reduced levels of binding to α2-3 and α2-6 sialosides compared to the levels for the viruses isolated in mammalian cells. Furthermore, these studies highlighted that specific glycans may be important for H3N2 virus growth in eggs.  相似文献   

18.
High virulence of influenza virus A/Puerto Rico/8/34 in mice carrying the Mx1 resistance gene was recently shown to be determined by the viral surface proteins and the viral polymerase. Here, we demonstrated high-level polymerase activity in mammalian host cells but not avian host cells and investigated which mutations in the polymerase subunits PB1, PB2, and PA are critical for increased polymerase activity and high virus virulence. Mutational analyses demonstrated that an isoleucine-to-valine change at position 504 in PB2 was the most critical and strongly enhanced the activity of the reconstituted polymerase complex. An isoleucine-to-leucine change at position 550 in PA further contributed to increased polymerase activity and high virulence, whereas all other mutations in PB1, PB2, and PA were irrelevant. To determine whether this pattern of acquired mutations represents a preferred viral strategy to gain virulence, two independent new virus adaptation experiments were performed. Surprisingly, the conservative I504V change in PB2 evolved again and was the only mutation present in an aggressive virus variant selected during the first adaptation experiment. In contrast, the virulent virus selected in the second adaptation experiment had a lysine-to-arginine change at position 208 in PB1 and a glutamate-to-glycine change at position 349 in PA. These results demonstrate that a variety of minor amino acid changes in the viral polymerase can contribute to enhanced virulence of influenza A virus. Interestingly, all virulence-enhancing mutations that we identified in this study resulted in substantially increased viral polymerase activity.Influenza virus infections continue to represent a major public health threat. Epidemics caused by influenza A viruses (FLUAV) occur regularly, often leading to excess mortality in susceptible populations, and may result in devastating pandemics for humans (37). An avian FLUAV originating from Asia and currently circulating among domestic birds in many countries has the potential to infect and kill people. If further adaptation to humans occurs, this virus strain might become the origin of a future pandemic (57). Although influenza viruses are well characterized, the molecular determinants governing cross-species adaptation and enhanced virulence of emerging virus strains in humans are presently not well understood. The known viral virulence factors are the envelope glycoproteins hemagglutinin (HA) and neuraminidase (NA), the nonstructural proteins NS1 and PB1-F2, and the polymerase complex. HA and NA are of key importance for host specificity and virulence because they determine specific receptor usage and efficient cell entry, as well as formation and release of progeny virus particles. NS1 is a multifunctional protein with interferon-antagonistic activity able to suppress host innate immune responses (11, 15). The small proapoptotic protein PB1-F2 induces more-severe pulmonary immunopathology and increases susceptibility to secondary bacterial pneumonia (3, 30). Recent evidence indicates that the polymerase complex consisting of the three subunits PA, PB1, and PB2 is also a determinant of virulence. Analyses of the 1918 pandemic virus showed that PB1 contributed to the high virulence of this deadly strain (38, 54, 56). Likewise, PB1 also contributed to the unusually high virulence of the pandemic viruses of 1957 and 1968 (23, 47). Interestingly, in recent avian-to-human transmissions of H5N1 and H7N7 viruses, the PB2 subunit was found to play a critical role (32, 40). Molecular studies revealed that an E-to-K exchange at position 627 of PB2 facilitates efficient replication of avian viruses in human cells (24, 33) and determines pathogenicity in mammals (18, 32, 51). Furthermore, recent analyses of highly pathogenic H5N1 viruses demonstrated that PA is involved in high virulence of these avian strains for both avian and mammalian hosts (21, 27).Moderately pathogenic FLUAV strains can be rendered more pathogenic by repeated passages in experimentally infected animals (2, 13, 16, 49, 55). During such adaptations, the evolving viruses frequently seem to acquire virulence-enhancing mutations in the polymerase genes. We recently characterized a virus pair with strikingly different virulences in mice and showed that the virulence-enhancing mutations of the highly virulent strain mapped to the HA, NA, and polymerase genes (13). The two A/Puerto Rico/8/34 (A/PR/8/34) strains are referred to here as high-virulence A/PR/8/34 (hvPR8) and low-virulence A/PR/8/34 (lvPR8). Interestingly, hvPR8 is also highly virulent in mice that carry functional alleles of the Mx1 resistance gene (17), most likely because it replicates rapidly enough to evade the innate immune response of naïve hosts (13).Here, we systematically analyzed which mutations in the three viral polymerase genes contribute to enhanced virulence of hvPR8. We found that two conservative mutations, one in PB2 (I504V) and one in PA (I550L), account for the high-virulence phenotype and that each single mutation considerably increases the activity of the reconstituted polymerase complex. Interestingly, in a new mouse adaptation experiment, the same I504V mutation in PB2 was acquired again by a highly virulent isolate as the only change in the polymerase complex. In contrast, another virulent, mouse-adapted isolate acquired two different mutations in PA and PB1. In this case, the change in PA had a greater impact on both enhanced polymerase activity and enhanced virulence than the mutation in PB1. These data demonstrate that increased polymerase activity contributes to high virus virulence and that human FLUAV have a range of options to achieve this goal.(This work was conducted by Thierry Rolling, Iris Koerner, and Petra Zimmermann in partial fulfillment of the requirements for an M.D. degree from the Medical Faculty [T.R.] or a Ph.D. degree from the Faculty of Biology [I.K. and P.Z.] of the University of Freiburg, Germany.)  相似文献   

19.
The clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by reverse genetics, and the effect on virus receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models was investigated. pdmH1N1 with D222G caused ocular disease in mice without further indications of enhanced virulence in mice and ferrets. pdmH1N1 with D222G retained transmissibility via aerosols or respiratory droplets in ferrets and guinea pigs. The virus displayed changes in attachment to human respiratory tissues in vitro, in particular increased binding to macrophages and type II pneumocytes in the alveoli and to tracheal and bronchial submucosal glands. Virus attachment studies further indicated that pdmH1N1 with D222G acquired dual receptor specificity for complex α2,3- and α2,6-linked sialic acids. Molecular dynamics modeling of the hemagglutinin structure provided an explanation for the retention of α2,6 binding. Altered receptor specificity of the virus with D222G thus affected interaction with cells of the human lower respiratory tract, possibly explaining the observed association with enhanced disease in humans.In April 2009, the H1N1 influenza A virus of swine origin was detected in humans in North America (9, 12, 42). Evidence for its origin came from analyses of the viral genome, with six gene segments displaying the closest resemblance to American “triple-reassortant” swine viruses and two to “Eurasian-lineage” swine viruses (13, 42). After this first detection in humans, the virus spread rapidly around the globe, starting the first influenza pandemic of the 21st century. The 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively mild, with a spectrum of disease ranging from subclinical infections or mild upper respiratory tract illness to sporadic cases of severe pneumonia and acute respiratory distress syndrome (3, 11, 27, 29, 30, 37). Overall, the case-fatality rate during the start of the pandemic was not significantly higher than in seasonal epidemics in most countries. However, a marked difference was observed in the case-fatality rate in specific age groups, with seasonal influenza generally causing highest mortality in elderly and immunocompromised individuals, and the pdmH1N1 affecting a relatively large proportion of (previously healthy) young individuals (3, 11, 27, 29, 30, 37).Determinants of influenza A virus virulence have been mapped for a wide variety of zoonotic and pandemic influenza viruses to the polymerase genes, hemagglutinin (HA), neuraminidase (NA), and nonstructural protein 1 (NS1). Such virulence-associated substitutions generally facilitate more efficient replication in humans via improved interactions with host cell factors. Since most of these virulence-associated substitutions were absent in the earliest pdmH1N1s, it has been speculated that the virus could acquire some of these mutations, potentially resulting in the emergence of more pathogenic viruses. Such virulence markers could be acquired by gene reassortment with cocirculating influenza A viruses, or by mutation. The influenza virus polymerase genes, in particular PB2, have been shown to be important determinants of the virulence of the highly pathogenic avian influenza (HPAI) H5N1 and H7N7 viruses and the transmission of the 1918 H1N1 Spanish influenza virus (17, 26, 34, 51). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is generally found in avian influenza viruses, while human viruses have a lysine (K), and this mutation was described as a determinant of host range in vitro (48). Given that all human and many zoonotic influenza viruses of the last century contained 627K, it was surprising that the pdmH1N1 had 627E. In addition, an aspartate (D)-to-asparagine (N) substitution at position 701 (D701N) of PB2 has previously been shown to expand the host range of avian H5N1 virus to mice and humans and to increase virus transmission in guinea pigs (26, 46). Like E627K, D701N was absent in the genome of pdmH1N1. Thus, the pdmH1N1 was the first known human pandemic virus with 627E and 701D, and it has been speculated that pdmH1N1 could mutate into a more virulent form by acquiring one of these mutations or both. Recently, it was shown that neither E627K nor D701N in PB2 of pdmH1N1 increased its virulence in ferrets and mice (18). The PB1-F2 protein has previously also been associated with high pathogenicity of the 1918 H1N1 and HPAI H5N1 viruses (8). The PB1-F2 protein of the pdmH1N1 is truncated due to premature stop codons. However, restoration of the PB1-F2 reading frame did not result in viruses with increased virulence (15). The NS1 protein of pdmH1N1 is also truncated due to a stop codon and, as a result, does not contain a PDZ ligand domain that is involved in cell-signaling pathways and has been implicated in the pathogenicity of 1918 H1N1 and HPAI H5N1 viruses (5, 8, 21). Surprisingly, restoration of a full-length version of the NS1 gene did not result in increased virulence in animal models (16). Mutations affecting virulence and host range have further frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with α2,3- or α2,6-linked sialic acids (SAs), the virus receptors on host cells (17, 32, 35, 50). The HA gene of previous pandemic viruses incorporated substitutions that allow efficient attachment to α2,6-SAs—the virus receptor on human cells—compared to ancestral avian viruses that attach more efficiently to α2,3-SAs (35, 47, 50).To search for mutations of potential importance to public health, numerous laboratories performed genome sequencing of pdmH1N1s, resulting in the real-time accumulation of information on emergence of potential virulence markers. Of specific interest were reports on amino acid substitutions from aspartic acid (D) to glycine (G) at position 222 (position 225 in H3) in HA of pdmH1N1. This substitution was observed in a fatal case of pdmH1N1 infection in June 2009 in the Netherlands (M. Jonges et al., unpublished data). Between July and December 2009, viruses from 11 (18%) of 61 cases with severe disease outcome in Norway have also been reported to harbor the D222G substitution upon direct sequencing of HA in clinical specimens. Such mutant viruses were not observed in any of 205 mild cases investigated, and the frequency of detection of this mutation was significantly higher in severe cases than in mild cases (23). In Hong Kong, the D222G substitution was detected in 12.5% (6) and 4.1% (31) of patients with severe disease and in 0% of patients with mild disease, in two different studies without prior propagation in embryonated chicken eggs. In addition to Norway and Hong Kong, the mutation has been detected in Brazil, Japan, Mexico, Ukraine, and the United States (56). Thus, D222G in HA could be the first identified “virulence marker” of pdmH1N1. pdmH1N1 with D222G in HA have not become widespread in the population, although they were detected in several countries. However, D222G in HA is of special interest, since it has also been described as the single change in HA between two strains of the “Spanish” 1918 H1N1 virus that differed in receptor specificity (47). Furthermore, upon propagation in embryonated chicken eggs, pdmH1N1 can acquire the mutation rapidly, presumably because it results in virus adaptation to avian (α2,3-SAs) receptors (49). The presence of the substitution in pdmH1N1s in the human population and its potential association with more severe disease prompted us to test its effect on pdmH1N1 receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号