首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vapor permeation-assisted esterification of l-(+)-lactic acid and ethanol was investigated using a zeolite membrane. Pervaporation and vapor permeation were initially investigated for dehydration performances, and the latter showed much better results. The molecular sieve property of the membrane resulted in a high separation factor of over 1000 for all conditions. The maximum flux was 10.24 kg/(m2 h) at a feed temperature of 145 °C, a water feed concentration of 10 wt%, and a feed pressure of 4.0 bars, respectively. For vapor permeation-assisted esterification using synthetic solutions, the productivity and ethyl lactate yield strongly depended on the dehydration rate. Realistic purifications were performed with fermentation broths of Pediococcus pentosaceus as the lactic acid producer. Experimental results revealed that most of the lactic acid was converted into ethyl lactate at the final stage of the reaction. After distillation and hydrolysis, high purity l-(+)-lactic acid was obtained with more than 95% recovery yields.  相似文献   

2.
Succinic acid (SA) was produced from Actinobacillus succinogenes with high cell density by continuous fermentation using fibrous bed bioreactor (FBB). The effects of feeding glucose concentration, dilution rate, and pH on continuous production of SA were examined to achieve an efficient and economical bioprocess. The optimum feeding glucose concentration, dilution rate, and pH were 80 g/L, 0.05 1/h, and 6.0–6.5, respectively. A SA concentration of 55.3 ± 0.8 g/L, productivity of 2.77 ± 0.04 g/L/h, and yield of 0.8 ± 0.02 g/g were obtained, and the continuous fermentation exhibited long-term stability for as long as 18 days (440 h) with no obvious fluctuations in both SA and biomass levels. The Jerusalimsky equation for the specific rate of SA production presented the inhibition phenomenon of the product, demonstrating that 60 g/L SA might be a critical concentration in this continuous FBB system. The results obtained could be beneficial for future fermentor designs and improvements in SA production.  相似文献   

3.
The effects of five alternative nitrogen sources, namely, malt sprout (MS), corn steep liquor (CSL), NH4Cl, NH4NO3 and diamine citrate (DC) were investigated on the l-(+)-lactic acid (LA) production by thermophile Lactobacillus plantarum As.1.3. Through the statistical analysis of the results by three steps of response surface methodology (RSM) design, MS and CSL were found to have significant effects on the LA production and their optimal concentrations in the medium should be 16.0 g/L and 12.0 g/L, respectively. The verification of the optimized medium showed that the maximum specific growth rate (μm) was 1.09 h−1, the cell yield coefficient (YX/S) and the l-(+)-lactic acid yield coefficient (YP/S) were 0.233 (OD620/g) and 0.98 (g/g), and the maximum volumetric productivity and the average volumetric productivity were 13.0 g/L h and 3.20 g/L h, respectively. The results indicate that the LA production can also be enhanced with the inexpensive nitrogen source alternatives.  相似文献   

4.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

5.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

6.
New strategies for improving the fermentation yield of (+)-terrein which is a fungal metabolite with multiple bioactivities are very urgent. In this study, the effect of suberoylanilide hydroxamic acid, one kind of epigenetic modifier, on the biosynthesis of (+)-terrein by Aspergillus terreus strain PF26 isolated from the marine sponge Phakellia fusca was investigated. It was found that suberoylanilide hydroxamic acid exhibited a positive impact on (+)-terrein production, resulting from promoting the biosynthesis of 6-hydroxymellein, the precursor of (+)-terrein. Through optimization of feeding concentration and time of suberoylanilide hydroxamic acid, 5.58 g/L (+)-terrein could be obtained in shake flask cultivation, 29.5% higher than the control. Correspondingly, the fermentation of A. terreus strain PF26 in 7.5-L stirred bioreactor with feeding suberoylanilide hydroxamic acid (900 μM, day 4) yielded 9.07 g/L (+)-terrein, 77.1% higher than the control. These results showed that the epigenetic modifier-suberoylanilide hydroxamic acid could be utilized to enhance the production of (+)-terrein, which laid the foundation of massive production of (+)-terrein by fermentation.  相似文献   

7.
The thermotolerant Rhizopus microsporus DMKU 33 capable of producing l-lactic acid from liquefied cassava starch was isolated and characterized for its phylogenetic relationship and growth temperature and pH ranges. The concentrations of (NH4)2SO4, KH2PO4, MgSO4 and ZnSO4·7H2O in the fermentation medium was optimized for lactic acid production from liquefied cassava starch by Rhizopus microsporus DMKU 33 in shake-flasks at 40 °C. The fermentation was then studied in a stirred-tank bioreactor with aeration at 0.75 vvm and agitation at 200 rpm, achieving the highest lactic acid production of 84 g/L with a yield of 0.84 g/g at pH 5.5 in 3 days. Lactic acid production was further increased to 105–118 g/L with a yield of 0.93 g/g and productivity of 1.25 g/L/h in fed-batch fermentation. R. microsporus DMKU 33 is thus advantageous to use in simultaneous saccharification and fermentation for l-lactic acid production from low-cost starchy substrates.  相似文献   

8.
Saccharum spontaneum is a wasteland weed consists of 45.10 ± 0.35% cellulose and 22.75 ± 0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91 ± 0.44 g/L (539.10 ± 0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85 ± 0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85 ± 0.07 IU/mL of filter paperase (FPase), 1.25 ± 0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56 ± 0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28 ± 0.5 °C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using “in-situ” entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm × 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45 ± 0.55 g/L (yield, 0.410 ± 0.010 g/g) and 21.66 ± 0.62 g/L (yield, 0.434 ± 0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85 ± 0.44 g/L, yield, 0.45 ± 0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.  相似文献   

9.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

10.
《Process Biochemistry》2014,49(7):1063-1070
Implementing of high strength vinegar fermentation is still the mission of vinegar producers. The aim of this study was to carry out high acidity vinegar fermentation efficiently based on comprehensive analysis on bacterial fermentation kinetics characteristics of Acetobacter pasteurianus CICIM B7003-02. In practice, semi-continuous vinegar fermentation was optimized with an optimal discharge/charge ratio of 34% of working volume (v/v), which resulted in a proper growth status of Acetobacter and beneficial to acetification. Then, a two-stage aeration protocol was adopted in the vinegar fermentation in line with the Acetobacter theoretical oxygen demand, by which both vinegar stoichiometric yield and acetification rate were improved effectively. As the final result, a titer of 93.09 ± 0.24 g/L acetic acid was achieved, the average acetification rate was enhanced to a level of 1.83 ± 0.01 g/L/h, and the vinegar stoichiometric yield was promoted to 93.97 ± 0.16%. The strategy and practice worked out from this study provided a valuable reference for performing large scale vinegar fermentation with higher strength.  相似文献   

11.
Recently we reported on raw-starch-digesting ability of alpha-amylase from an insect Sitophilus oryzae (SoAMY) expressed in recombinant Yarrowia lipolytica cells, and demonstrated its usefulness in simultaneous saccharification and fermentation processes with industrial yeasts. In this study we applied fed-batch cultures of Y. lipolytica 4.29 strain reaching high-cell-densities (up to 70 [gDCW/L]), to enhance SoAMY production. SoAMY activity in the medium reached the peak value of 22,979.23 ± 184 [AU/L], at volumetric productivity of 121.58 ± 1.75 [AU/L/h], and yield of 71.83 ± 3.08 [AU/gglycerol], constituting roughly 160-fold improvement, compared to the best previous result. The cultivations were accompanied by high production of erythritol (83.58 [g/L]), at the marginal production of mannitol (5.46 [g/L]). Elementary analyses of media constituents, the enzyme and the yeast biomass gave better insight into carbon and nitrogen fluxes distribution. Due to application of genetic engineering and bioprocess engineering strategies, the insect-derived enzyme can be produced at the quantities competitive to microbial catalysts.  相似文献   

12.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

13.
Proton exchange membranes (PEMs) are typically used in two-chamber microbial fuel cells (MFCs) to separate the anode and cathode chambers while allowing protons to pass between the chambers. However, PEMs such as Nafion are not cost-effective. To reduce the cost of MFCs, we examined the performances of cellulose acetate microfiltration membranes in a two-chamber microbial fuel cell using acetate. The internal resistance, the maximum power density and the coulombic efficiency (CE) of the microfiltration membrane MFC (MMMFC) were 263 Ω, 0.831 ± 0.016 W/m2 and 38.5 ± 3.5%, respectively, in a fed-batch mode, while the corresponding values of the MFC using a PEM were 267 Ω, 0.872 ± 0.021 W/m2 and 74.7 ± 4.6%, respectively. We further used the MMMFC for poultry wastewater treatment. The maximum power density of 0.746 ± 0.024 W/m2 and CE of 35.3 ± 3.2% were achieved when the poultry wastewater containing 566 mg/L COD was used, removing 81.6 ± 6.6% of the COD. These results demonstrate microfiltration membranes, compared with PEMs, have a similar internal resistance and reduce pH gradient across the membrane. They parallel PEMs in maximum power density, while CE is much lower due to the oxygen and substrate diffusion. The MMMFC was effective for poultry wastewater treatment with high COD removal.  相似文献   

14.
A continuous fermentation process for 2-keto-gluconic acid (2KGA) production from cheap raw material corn starch hydrolysate was developed using the strain Pseudomonas fluorescens AR4. The dilution rate and feeding glucose concentration had a significant effect on the cell concentrations, glucose utilization and 2KGA production performance. The optimal operating factors were obtained as: 0.065 h−1 of dilution rate, 180 g/L of feeding glucose concentration, and 16 h of batch fermentation time as the starting point. Under these conditions, the steady state had the 135.92 g/L of produced 2KGA concentration, 8.83 g/L.h of average volumetric productivity, and 0.9510 g/g of yield. In conclusion, the proposed efficient and stable continuous fermentation process for 2KGA production by the strain P. fluorescens AR4 is potentially competitive for industrial production from corn starch hydrolysate in terms of 2KGA productivity and yield.  相似文献   

15.
To alleviate the problems of low substrate loading, nonisothermal, end-product inhibition of ethanol during the simultaneous saccharification and fermentation, a nonisothermal simultaneous solid state saccharification, fermentation, and separation (NSSSFS) process was investigated; one novel pilot scale nonisothermal simultaneous solid state enzymatic saccharification and fermentation coupled with CO2 gas stripping loop system was invented and tested. The optimal pretreatment condition of steam-explosion was 1.5 MPa for 5 min in industrial level. In the NSSSFS, enzymatic saccharification and fermentation proceeded at around 50 °C and 37 °C, respectively, and were coupled together by the hydrolyzate loop; glucose from enzymatic saccharification was timely consumed by yeast, and the formed ethanol was separated online by CO2 gas stripping coupled with adsorption of activated carbon; the solids substrate loading reached 25%; ethanol yields from 18.96% to 30.29% were obtained in fermentation depending on the materials tested. Based on the pilot level of 300 L fermenter, a novel industrial-level of 110 m3 solid state enzymatic saccharification, fermentation and ethanol separation plant had been successfully established and operated. The NSSSFS was a novel and feasible engineering solution to the inherent problems of simultaneous saccharification and fermentation, which would be used in large scale and in industrial production of ethanol.  相似文献   

16.
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/S) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.  相似文献   

17.
When Saccharomyces cerevisiae was cultivated under ~200 g glucose/l condition, the time point at which glucose was completely utilized coincided with the moment at which the slope of a redox potential profile changed from negative or zero to positive. Based on this feature, a redox potential-driven glucose-feeding fermentation operation was developed, and resulted in a self-cycling period of 14.25 ± 0.4 h. The corresponding ethanol concentration was maintained at 88.4 ± 1.0 g/l with complete glucose conversion, and the cell viabilities increased from 80% in the transition period to 97.2 ± 1.1%, implying the occurrence of yeast acclimatization. In contrast, a pre-determined 36-h manually adjusted period was chosen to oscillate yeast cells under ~250 g glucose/l conditions, which resulted in 106.76 ± 0.7 g ethanol/l and 15.19 ± 1.3 g glucose/l remaining at the end of each cycle. Compared to the equivalent batch and continuous ethanol fermentation processes, the annual ethanol productivity of the reported fermentation operation is 2.4% and 13.2% greater, respectively in ~200 g feeding glucose/l conditions.  相似文献   

18.
Terrein has potential application in the fields of medicine, cosmetology and agriculture, however, the chemical synthesis of terrein with single configuration is a difficult task, and the biosynthesis of terrein always results in low production (ca. 0.33–400 mg/L). In this study, we reported an Aspergillus terreus strain PF26 which could produce (+)-terrein on a high level. After the selection of a suitable basic medium, the component concentrations were optimized using Plackett–Burman design and response surface methodology. Consequently, an optimal medium containing 28.41 g glucose, 23.18 g maltose, 20.00 g mannitol, 8.52 g malt extract, 10.00 g monosodium glutamate 10.00 g NH4Cl in 1 L ASW was obtained, and a high (+)-terrein production of 3.71 g/L fermentation broth was achieved, which represents the highest fermentation production of (+)-terrein to date. The result highlighted the industry's potential of A. terreus strain PF26 in the production of bioactive (+)-terrein on a large-scale.  相似文献   

19.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

20.
Sugarcane bagasse and rice straw were subjected to acid and alkaline ethanolysis and sequential enzymatic hydrolysis to produce glucose for lactic acid production. Influence of physico-chemical treatments using ultrasonic bath and ultrasonic probe was studied compared with mechanical stirring. The results showed that the highest glucose yield with least contamination of xylose was obtained from acid ethanolysis fractionation (5 N H2SO4 + 50%, v/v ethanol) when stirred at 90 °C for 4 h. Alkaline ethanolysis accomplished high amount of both glucose and xylose released, however it was not favorable substrate for homofermentative lactic acid bacteria. In order to enhance enzymatic hydrolysis of acid ethanolysis fractionated samples, lignin was subsequently removed by the second step alkaline/peroxide delignification. The maximum lactic acid was obtained at 23.6 ± 0.2 g/L from Lactobacillus casei fermentation after 72 h when hydrolysate from two-step acid hydrolysis and alkaline/peroxide fractionated sugarcane bagasse containing 24.6 g/L initial glucose concentration was used as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号