首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Longan (Dimocarpus longan Lour, syn. Euphoria longan Lam.) represents an important fruit in Northern Thailand and has significant economic impact. The fruit is either consumed fresh or as commercially prepared dried and canned products. The canning industry in Thailand produces considerable quantities of waste products, in particular Longan seeds. Because these seeds may be an exploitable source of natural phenolic antioxidants, it was of interest to identify, purify and quantitate the major potential antioxidant phenolics contained therein. The polyphenolic fraction from ground Longan seeds was obtained by extraction with methanol after delipidation with hexane. The hexane extract contained predominantly long-chain fatty acids with major contributions from palmitic (35%) and oleic (28%) acids. The polyphenolic fraction (80.90 g/kg dry weight) was dominated by ellagic acid (25.84 g/kg) and the known ellagitannins corilagin (13.31 g/kg), chebulagic acid (13.06 g/kg), ellagic acid 4-O-α-l-arabinofuranoside (9.93 g/kg), isomallotinic acid (8.56 g/kg) and geraniin (5.79 g/kg). Structure elucidation was performed with mass spectrometry and complete assignment of 1H and 13C NMR signals. The methanol extracts exhibited strong antioxidant capacities with an IC50 of 154 μg/ml for reactive oxygen species attack on salicylic acid and 78 μg/ml for inhibition of xanthine oxidase in the hypoxanthine/xanthine oxidase assay. The extracts were less effective in the 2-deoxyguanosine assay (IC50 = 2.46 mg/ml), indicating that gallates along with ellagic acid and its congeners exert their potential antioxidant effects predominantly by precipitation of proteins such as xanthine oxidase. This was confirmed for the pure compounds gallic acid, methyl gallate, ellagic acid and corilagin.  相似文献   

2.
《Process Biochemistry》2007,42(9):1291-1295
Ellagic acid production from cups extract of valonia acorns by pure and mixed cultures of Aspergillus oryzae and Trichoderma reesei was investigated. Ellagitannin acyl hydrolase and xylanase as well as cellulase during the pure and mixed cultures were also determined. The results revealed that mixed culture could produce higher ellagic acid yield (23%) than either of pure culture. And it was found that the three enzymes from mixed culture appeared synergistic effect on ellagic acid production. Statistical analysis showed that ellagic acid yield was correlated very well with the three enzymes activities, resulting in the model for ellagic acid production with high R2 value of 0.998 and significant level p < 0.004.  相似文献   

3.
The uptake rates of different nitrogen (N) forms (NO3, urea, and the amino acids glycine and glutamic acid) by N-deficient, laboratory-grown cells of the mixotrophic haptophyte, Prymnesium parvum, were measured and the preference by the cells for the different forms determined. Cellular N uptake rates (ρcell, fmol N cell−1 h−1) were measured using 15N-labeled N substrates. P. parvum showed high preference for the tested amino acids, in particular glutamic acid, over urea and NO3 under the culture nutrient conditions. However, extrapolating these rates to Baltic Seawater summer conditions, P. parvum would be expected to show higher uptake rates of NO3 and the amino acids relative to urea because of the difference in average concentrations of these substrates. A high uptake rate of glutamic acid at low substrate concentrations suggests that this substrate is likely used through extracellular enzymes. Nitrate, urea and glycine, on the other hand, showed a non-saturating uptake over the tested substrate concentration (1–40 μM-N for NO3 and urea, 0.5–10 μM-N for glycine), indicating slower membrane-transport rates for these substrates.  相似文献   

4.
《Process Biochemistry》2007,42(6):1010-1020
Acid hydrolysis of distilled grape marc, an useless agricultural residue from wineries, was carried out using dilute sulfuric acid (1–5%) at several reaction times and 130 °C, in order to obtain monomeric sugars which after supplementation with corn steep liquor (10 g/L) and yeast extract (10 g/L) were used to carry out the fermentation into lactic acid by Lactobacillus pentosus without detoxification stage. Xylose was the main sugar generated followed by glucose and arabinose. Possible inhibitor compounds such as acetic acid liberated from acetyl groups, and furfural and hydroxymethylfurfural generated by sugars dehydration, were produced as degradation byproducts. The hydrolysis stage was optimized by using an incomplete factorial design where the independent variables were the percentage of catalyzer, the reaction time and the temperature. The optima conditions in terms of xylose concentration were 3.3% H2SO4, 125 min and 130 °C, but due to the high furfural concentration, two other conditions using lower reaction times (30 and 77.5 min) were also selected to assay the fermentation. Although any condition was feasible to fully utilize the relatively broad spectra of sugars released by the acid hydrolysis, under the shorter reaction time the best results were achieved (QP = 0.476 g/L h; YP/S = 0.71 g/g) which represents a theoretical yield of 97%. Furthermore, L. pentosus produced 4.8 mg/L of intracellular biosurfactants, measured as biosurfactin, representing a yield of 0.60 mg of intracellular biosurfactant per g of sugars consumed.  相似文献   

5.
Vesicular monoamine transporter-2 (VMAT2) is a viable target for development of pharmacotherapies for psychostimulant abuse. Lobeline (1) is a potent antagonist at α4β21 nicotinic acetylcholine receptors, has moderate affinity (Ki = 5.46 μM) for VMAT2, and is being investigated currently as a clinical candidate for treatment of psychostimulant abuse. A series of carboxylic acid and sulfonic acid ester analogs 220 of lobeline were synthesized and evaluated for interaction with α4β21 and α71 neuronal nicotinic acetylcholine receptors (nAChRs), the dopamine transporter (DAT), serotonin transporter (SERT) and VMAT2. Both carboxylic acid and sulfonic acid esters had low affinity at α71 nAChRs. Similar to lobeline (Ki = 4 nM), sulfonic acid esters had high affinity at α4β21 (Ki = 5–17 nM). Aromatic carboxylic acid ester analogs of lobeline (24) were 100–1000-fold less potent than lobeline at α4β21 nAChRs, whereas aliphatic carboxylic acid ester analogs were 10–100-fold less potent than lobeline at α4β21. Two representative lobeline esters, the 10-O-benzoate (2) and the 10-O-benzenesulfonate (10) were evaluated in the 36Rb+ efflux assay using rat thalamic synaptosomes, and were shown to be antagonists with IC50 values of 0.85 μM and 1.60 μM, respectively. Both carboxylic and sulfonic acid esters exhibited a range of potencies (equipotent to 13–45-fold greater potency compared to lobeline) for inhibiting DAT and SERT, respectively, and like lobeline, had moderate affinity (Ki = 1.98–10.8 μM) for VMAT2. One of the more interesting analogs, p-methoxybenzoic acid ester 4, had low affinity at α4β21 nAChRs (Ki = 19.3 μM) and was equipotent with lobeline, at VMAT2 (Ki = 2.98 μM), exhibiting a 6.5-fold selectivity for VMAT2 over α4β2 nAChRs. Thus, esterification of the lobeline molecule may be a useful structural modification for the development of lobeline analogs with improved selectivity at VMAT2.  相似文献   

6.
The present study deals with the production of structured lipid containing omega-3 and omega-6 fatty acids in the ratio of 1:1 by incorporating omega-3 fatty acids (α-linolenic acid) from linseed oil into groundnut oil using lipase (Lipozyme IM from Rhizomucor miehei) catalyzed acidolysis reaction in hexane. The reaction conditions were optimized by response surface methodology with a four-variable five-level central composite rotatable experimental design. The influence of four independent parameters, namely ratio of fatty acid concentrate from linseed to groundnut oil (0.66–1.98, w/w), reaction temperature (30–60 °C), enzyme concentration (1–5%) and reaction time (2–54 h) on omega-3 fatty acids incorporation into groundnut oil were optimized. Optimal conditions for the structured lipid containing omega-3 to omega-6 fatty acids in the ratio of 1:1 were determined to be; enzyme concentration 3.75% (w/w), temperature 37.5 °C, incubation time 30.81 h and ratio of free fatty acid concentrate from linseed oil to groundnut oil 1.16 (w/w).  相似文献   

7.
A series of phenolic acids and phenol natural products, such as p-hydroxybenzoic acid, p-coumaric acid, caffeic acid, ferulic acid, gallic acid, syringic acid, quercetin, and ellagic acid, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). All mammalian isozymes of human (h) or murine (m) origin hCA I–hCA XII, mCA XIII and hCA XIV were inhibited in the low micromolar or submicromolar range by these (poly)phenols (KIs in the range of 0.87–7.79 μM). p-Hydroxybenzoic acid was the best inhibitor of all isozymes (KIs of 0.87–35.4 μM) and the different isozymes showed very variable inhibition profiles with these derivatives. Phenols like the ones investigated here possess a CA inhibition mechanism distinct of that of the sulfonamides/sulfamates used clinically or the coumarins. Unlike the sulfonamides, which bind to the catalytic zinc ion, phenols are anchored at the Zn(II)-coordinated water molecule and bind more externally within the active site cavity, making contacts with various amino acid residues. As this is the region with the highest variability between the many CA isozymes found in mammals, this class of compounds may lead to isoform-selective inhibitors targeting just one or few of the medicinally relevant CAs.  相似文献   

8.
The reproducibility of the determination of the molecular weight of chitosans in the 90–210 kDa range (Mn) by analytical size exclusion chromatography with multi-angle laser light scattering (SEC-MALLS) was improved by reducing the salt concentration in the mobile phase from (0.3 M acetic acid, 0.2 M sodium acetate, and 0.8 mM sodium azide) to (0.15 M acetic acid, 0.1 M sodium acetate, and 0.4 mM sodium azide) using Tosoh TSKgel G6000PWXL and G5000PWXL columns in series. The variability of measured molecular weight was significantly reduced by lowering the acetate concentration in the mobile phase, while the average molecular weight did not change significantly. The coefficient of variation of the number-average molecular weight, CV(Mn), decreased from 7–12% to 3–6% upon mobile phase dilution. This reduced variability in molecular weight of chitosans obtained from SEC is a significant improvement when precise values of chitosan molecular weight are required, for example in stability studies where viscosity changes in concentrated chitosan solutions are assessed, and in gene delivery applications.  相似文献   

9.
《Process Biochemistry》2010,45(5):617-626
A new keratinolytic enzyme-producing bacterium was isolated from slaughter house polluted water and identified as Bacillus pumilus A1. Medium composition and culture conditions for the keratinases production by B. pumilus A1 were optimized using two statistical methods: Plackett–Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and central composite design used to optimize the concentration of the five significant variables: feathers meal, soy peptone, NaCl, KCl, and KH2PO4. The medium optimization resulted in a 3.4-fold increase in keratinase production (87.73 U/ml) compared to that of the initial medium (25.9 U/ml). The zymography analysis shows the presence of at least five keratinolytic enzymes. The keratinolytic activity of the extracellular proteinases was examined by incubation with non-autoclaved chicken feathers. Complete solubilisation of whole feathers was observed after a 6-h incubation at temperatures ranging from 45 °C to 60 °C. The crude enzyme exhibited maximal activity at 60 °C and pH 8.5 or 55 °C and pH 9.0 using casein or keratin as substrates, respectively.  相似文献   

10.
A complete randomised block design experiment was conducted to investigate the effects of benzoic acid inclusion level on nitrogen (N) metabolism, and manure ammonia (NH3) and odour emissions in finishing pigs. Sixteen boars (64 kg live weight ± 1.5 kg) were assigned to one of four dietary treatments (T) varying in benzoic acid concentration: (T1) 0 g benzoic acid/kg (as fed); (T2) 10 g benzoic acid/kg; (T3) 20 g benzoic acid/kg; (T4) 30 g benzoic acid/kg. Animals were housed in individual metabolism crates and feed was provided ad libitum. All diets were formulated to have similar concentration of digestible energy and ileal digestible lysine with benzoic acid replacing wheat in the diet. There was a linear decrease in NH3 emission (P<0.001), as the dietary benzoic acid concentration increased (141.4 mg/g versus 40.5 mg/g N intake (S.E.M. 12.1) over the 240-h storage period). However, there was no effect (P>0.05) of benzoic acid on odour concentration. Urinary nitrogen (N) excretion, total N excretion and the urinary:faecal N ratio were linearly reduced (P<0.05) with increasing benzoic acid inclusion. Furthermore, N retention increased linearly (P<0.05) as benzoic acid concentration increased from 0 g/kg to 30 g/kg in the diet. In conclusion, the inclusion of benzoic acid in the diet of finishing pigs has the potential to reduce total and urinary N excretion and the urinary to faecal N ratio. This was mirrored by reductions in manure NH3 emissions in the benzoic acid supplemented treatments.  相似文献   

11.
《Process Biochemistry》2004,39(11):1341-1345
Batch fermentation of glucose to gluconic acid was conducted using Aspergillus niger under growth and non-growth conditions using pure oxygen and air as a source of oxygen for the fermentation in 2 and 5 l stirred tank reactors (batch reactor). Production of gluconic acid under growth conditions was conducted in a 5 l batch reactor. Production and growth rates were higher during the period of supplying pure oxygen than that during supplying air, and the substrate consumption rate was almost constant. For the production of gluconic acid under non-growth conditions, conducted in the 2 l batch reactor, the effect of the pure oxygen flow rate and the biomass concentration on the gluconic acid production was investigated and an empirical equation suggested to show the dependence of the production rate rp on the biomass concentration Cx and oxygen flow rate Q, at constant operating conditions (30 °C, 300 rpm and pH 5.5). Biomass concentration had a positive effect on the production rate rp, and the effect of Q on rp was positive at high biomass concentrations.  相似文献   

12.
Ten crude extracts and their solvent partition fractions from five species of Terminalia collected in Tanzania were assessed for antimycobacterial effects using Mycobacterium smegmatis ATCC 14468 as a model organism. We report here, for the first time, on antimycobacterial effects of root and stem bark extracts of Terminalia sambesiaca and Terminalia kaiserana as well as of fruit extracts of Terminalia stenostachya and leaf extracts of Terminalia spinosa. T. sambesiaca gave the best effects of all the investigated species in terms of the sizes of the inhibitory zones of root and stem bark extracts. A crude methanol root extract of T. sambesiaca gave lower MIC values (1250 μg/ml) than its aqueous and butanol soluble fractions (MIC 2500 μg/ml). Our preliminary HPLC–DAD data indicates that methanol and aqueous extracts of T. sambesiaca roots are rich in ellagitannins and ellagic acid glycosides. Particularly, one polar ellagitannin at tR 10.3–10.9 min dominates the extracts quantitatively and thus may be responsible for their good antimycobacterial effects. In contrast to the more polar fractions, a chloroform soluble fraction of the roots of T. sambesiaca was devoid of antimycobacterial activity. Also crude methanol and aqueous extracts of the stem bark of T. sambesiaca gave promising antimycobacterial effects (MIC 1250 μg/ml). All fractions of T. kaiserana roots, except from the aqueous insoluble gave good antimycobacterial effects (MIC 1250 μg/ml) and the aqueous extract showed the best effects of the fractions in terms of the size of inhibition zones. These results justify the uses of hot water decoctions of the roots of T. kaiserana for treatment of cough, one of the symptoms of TB. According to HPLC–DAD data methanol extracts of T. kaiserana roots and their aqueous fractions are rich in polar ellagitannins and ellagic acid glycosides. Quantitatively, the ellagitannins dominate these extracts and therefore the good antimycobacterial activity of the methanol and aqueous extracts is assumed to be due to these compounds. Sephadex LH-20 CC fractions of a methanol extract of the roots of T. kaiserana inhibited the growth of M. smegmatis, giving MIC values of 1000 μg/ml. Ellagic acid glycosides in these fractions must be responsible for their good antimycobacterial effects since they are present in high concentrations. Good antimycobacterial effects were also obtained with a root extract of Terminalia sericea, and especially the butanol soluble fraction was a good inhibitor of the growth of M. smegmatis (MIC 1562 μg/ml). Our preliminary HPLC–DAD results show that the roots of T. sericea are rich in ellagitannins, ellagic acid glycosides and at least one stilbene compound. Extracts of the fruits of T. stenostachya gave good antimycobacterial effects, butanol extracts being the most active. Also the leaves of T. stenostachya, and especially the butanol soluble extracts, give good antimycobacterial effects. Our HPLC–DAD data indicate that T. stenostachya leaves contain large quantities of gallic acid, ellagitannins and ellagic acid glycosides. Our results indicate that many of the investigated species of Terminalia might contain leads for development of anti-TB drugs. Standardized extracts of T. sambesiaca, T. kaiserana and T. sericea roots could be used as easily available and cheap medicines for treatment of TB in remote regions of East and South Africa.  相似文献   

13.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

14.
《Process Biochemistry》2007,42(11):1537-1545
Crude glycerol is the primary by-product in the biodiesel industry, which is too costly to be purified into to higher quality products used in the health and cosmetics industries. This work investigated the potential of using the crude glycerol to produce docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the microalga Schizochytrium limacinum. The results showed that crude glycerol supported alga growth and DHA production, with 75–100 g/L concentration being the optimal range. Among other medium and environmental factors influencing DHA production, temperature, trace metal (PI) solution concentration, ammonium acetate, and NH4Cl had significant effects (P < 0.1). Their optimal values were determined 30 mL/L of PI, 0.04 g/L of NH4Cl, 1.0 g/L of ammonium acetate, and 19.2 °C. A highest DHA yield of 4.91 g/L with 22.1 g/L cell dry weight was obtained. The results suggested that biodiesel-derived crude glycerol is a promising feedstock for production of DHA from heterotrophic algal culture.  相似文献   

15.
This study represents the most comprehensive assessment of kinetic parameters for Karenia brevis to date as it encompasses natural populations sampled during three different bloom years in addition to cultured strains under controlled conditions. Nitrogen (N) uptake kinetics for ammonium (NH4+), nitrate (NO3), urea, an amino acid mixture, individual amino acids (glutamate and alanine), and humic substrates were examined for the toxic red tide dinoflagellate, K. brevis, during short term incubations (0.5–1 h) using 15N tracer techniques. Experiments were conducted using natural populations collected during extensive blooms along the West Florida Shelf in October 2001, 2002, and 2007, and in cultured strains (CCFWC 251 and CCFWC 267) obtained from the Florida Fish and Wildlife Institute culture collection. Kinetic parameters for the maximum uptake velocity (Vmax), half-saturation concentration (Ks), and the affinity constant (α) were determined. The affinity constant is considered a more accurate indicator of substrate affinity at low concentrations. K. brevis took up all organic substrates tested, including N derived from humic substances. Uptake rates of the amino acid mixture and some NO3 incubations did not saturate even at the highest substrate additions (50–200 μmol N L−1). Based upon the calculated α values, the greatest substrate preference was for NH4+ followed by NO3  urea, humic compounds and amino acids. The ability of K. brevis to utilize a variety of inorganic and organic substrates likely helps it flourish under a wide range of nutrient conditions from bloom initiation in oligotrophic waters offshore to bloom maintenance near shore where ambient nutrient concentrations may be orders of magnitude greater.  相似文献   

16.
A novel precolumn derivatization reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV–vis detection for the quantitative determination of total concentration of asiatic acid (AA) in beagle dog plasma is described. AA was extracted with n-hexane-dichloromethane-2-propanol (20:10:1, v/v/v) from plasma, which had been hydrolyzed by acid and derivatized with p-Toluidine. Chromatographic separation was achieved on a C18 column using gradient elution in a water–methanol system. Detection was set at UV wavelength of 248 nm. A calibration curve ranging from 0.01 to 1.5 μg/mL was shown to be linear, and the lower limit of quantification (LLOQ) was 0.01 μg/mL. The intra- and inter-day precisions which were determined by three different concentrations (0.05, 0.2 and 0.8 μg/mL) ranged from 4.4% to 13.1% and 4.6% to 14.2%, respectively. Mean extraction recoveries were no less than 65% for AA and ursolic acid (IS). Plasma samples containing asiatic acid were stable for 30 days at ?20 °C. The method was successfully applied to a pharmacokinetic study in beagle dogs after oral administration of Centella asiatica extract, and the main pharmacokinetic parameters obtained were: T1/2, 4.29 h; Tmax, 2.70 h; Cmax, 0.74 μg/mL; AUC0–t and AUC0–∞, 3.74 and 3.82 μg h/mL, respectively.  相似文献   

17.
Typha angustifolia was evaluated for various heavy metals (Cu, Pb, Ni, Fe, Mn, and Zn) bioremediation potential from aqueous solution containing variable concentrations of phenol (100–800 mg l?1) and melanoidin (2500–8500 Co–Pt) at 20, 40, and 60 days. The concentration of phenol (200–400 mg l?1) along with melanoidin 2500 Co–Pt showed optimum for phytoremediation of tested heavy metals, while, higher concentrations of melanoidin (5600–8500 Co–Pt) showed toxic effect on T. angustifolia along with phenol. Phenol and melanoidin showed adverse effect on T. angustifolia of up to 20 days incubation, but this leads to induction of peroxidase and ascorbic acid activity to cope with adverse conditions. Subsequently, as pollutants were decreased along with plant growth, peroxidase and ascorbic acid also declined. However, with reduction of peroxidase, catalase level was increased. The Cu, Zn, and Ni were accumulated at maximum in all tested conditions. The TEM observations of T. angustifolia showed clotted deposition of metals and shrinkage of cell in root, breakdown of spongy and palisade parenchyma of leaves at higher concentration of phenol (100 mg l?1) and melanoidin (5500 Co–Pt). Thus, this study concluded that T. angustifolia could be a potential phytoremediator for heavy metals from metal, melanoidin, and phenol containing industrial wastewater at optimized condition.  相似文献   

18.
This report provides a synopsis of the esterase processing of short chain fatty acid (SCFA)-derivatized hexosamine analogs used in metabolic glycoengineering by demonstrating that the extracellular hydrolysis of these compounds is comparatively slow (e.g., with a t1/2 of ~4 h to several days) in normal cell culture as well as in high serum concentrations intended to mimic in vivo conditions. Structure–activity relationship (SAR) analysis of common sugar analogs revealed that O-acetylated and N-azido ManNAc derivatives were more refractory against extracellular inactivation by FBS than their butanoylated counterparts consistent with in silico docking simulations of Ac4ManNAc and Bu4ManNAc to human carboxylesterase 1 (hCE1). By contrast, all analogs tested supported increased intracellular sialic acid production within 2 h establishing that esterase processing once the analogs are taken up by cells is not rate limiting.  相似文献   

19.
《Process Biochemistry》2007,42(3):352-362
The effects of medium components and environmental factors on the production of mycelial biomass and polysaccharide–peptide complexes (exobiopolymers) by Cordyceps sphecocephala J-201 were investigated in submerged cultures. The optimal temperature and initial pH for the production of both mycelial biomass and exobiopolymers in flask cultures were found to be 25 °C and pH 4–5, respectively. The optimal combination of the media constituents was as follows (g l−1): sucrose 40, yeast extract 6, polypepton 2, KH2PO4 0.46, K2HPO4 1, and MgSO4·7H2O 0.5. The results of bioreactor culture revealed that the maximum concentration of mycelial biomass (28.2 g l−1) was obtained at an agitation speed of 300 rpm and at an aeration rate of 2 vvm, whereas maximum exobiopolymer production (2.5 g l−1) was achieved at a milder agitation speed (150 rpm). There was a significant variance in mycelial morphology between different aeration conditions. Looser mycelial pellets were developed, and their size and hairiness increased as the aeration rate increased from 0.5 to 2.0 vvm, resulting in enhanced exobiopolymer production. The apparent viscosities of fermentation broth increased rapidly towards the end of fermentations at the conditions of high aeration rate and agitation speed, which were mainly due to high amount of mycelial biomass rather than exobiopolymers at the later stages of fermentation. The three different exobiopolymers (FR-I, -II, and -III) were fractionated by a gel filtration chromatography on Sepharose CL-6B. The carbohydrate and protein contents in each fraction were significantly different and the molecular weights of FR-I, FR-II, and FR-III were determined to be 1831, 27, and 2.2 kDa, respectively. The compositional analysis revealed that the three fractions of crude exobiopolymers consisted of acidic and nonpolar amino acids, such as aspartic acid, glutamic acid, glycine, and valine in protein moiety, and of mainly mannose and galactose in sugar moiety.  相似文献   

20.
Selective protein labeling with a small molecular probe is a versatile method for elucidating protein functions under live-cell conditions. In this Letter, we report the design of the binuclear Ni(II)–iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag-fused proteins. We found that the Ni(II)–IDA complex 1-2Ni(II) binds to the His6-tag (HHHHHH) with a strong binding affinity (Kd = 24 nM), the value of which is 16-fold higher than the conventional Ni(II)–NTA complex (Kd = 390 nM). The strong binding affinity of the Ni(II)–IDA complex was successfully used in the covalent labeling and fluorescence bioimaging of a His-tag fused GPCR (G-protein coupled receptor) located on the surface of living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号