首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A quantitative sequencing (QS) protocol was established for predicting the frequencies of the A298S and G324A mutations in the diamondback moth (Plutella xylostella) type-1 acetylcholinesterase (AChE) locus, putatively involved in organophosphate (OP) and carbamate (CB) insecticide resistance. The nucleotide resistant signal ratio at each mutation site was generated from sequencing chromatograms and plotted against the corresponding resistance allele frequency. Frequency prediction equations were generated from the plots by linear regression, and the signal ratios were highly correlated with resistance allele frequencies (r2 > 0.987). QS analysis of 15 representative regional field populations of DBM in Korea revealed that the allele frequencies of both A298S and G324A were over 70% in most field populations, implying the prevalent state of these resistance-associated mutations. In the AChE inhibition assay, all populations showed reduced sensitivity to paraoxon, DDVP, carbaryl, and carbofuran, supporting the notion that DBM resistance to OPs and CBs is widespread in Korea.  相似文献   

2.
The mutations (G228S, A391T and F439W) and duplication of the acetylcholinesterase (AChE) gene (Tuace) are involved in monocrotophos resistance in the two-spotted spider mites, Tetranychus urticae (Kwon et al., 2010a, Kwon et al., 2010b). The overexpression of T. urticae AChE (TuAChE) as a result of Tuace duplication was confirmed in several field-collected populations by Western blotting using an AChE-specific antibody. To investigate the effects of each mutation on the insensitivity and fitness cost of AChE, eight variants of TuAChE were expressed in vitro using the baculovirus expression system. Kinetic analysis revealed that the G228S and F439W mutations confer approximately 26-fold and 99-fold increases in the insensitivity to monocrotophos, respectively, whereas the insensitivity increased over 1165-fold in the AChE with double mutations. Nevertheless, the presence of these mutations reduced the catalytic efficiency of AChE significantly. In particular, the TuAChE having both mutations together exhibited a 17.8~27.1-fold reduced catalytic efficiency, suggesting an apparent fitness cost in the monocrotophos-resistant mites. The A391T mutation did not change the kinetic properties of either the substrate or inhibitor when present alone but mitigated the negative impacts of the F439 mutation. To simulate the catalytic activity of the overexpressed TuAChE in two T. urticae strains (approximately 6 copies for AD strain vs. 2 copies for PyriF strain), appropriate TuAChE variants were combined to make up the desired AChE copies and mutation frequencies, and their enzyme kinetics were determined. The reconstituted 6-copy and 2-copy TuAChEs exhibited catalytic efficiency levels comparable to those of a single-copy wildtype TuAChE, suggesting that, if mutations are present, multiple copies of AChE are required to restore a normal level of catalytic activity in the monocrotophos-resistant mites. In summary, the present study provides clear evidence that Tuace duplication resulted in the proportional overexpression of AChE, which was necessary to compensate for the reduced catalytic activity of AChE caused by mutations.  相似文献   

3.
Acetylcholinesterase (AChE) is the target enzyme of organophosphorus and carbamate insecticides. We applied trichlorfon to select resistant strains of Bactrocera dorsalis Hendel in the laboratory. Two trichlorfon-resistant strains, the Tri-R1 strain with 18.23-fold resistance and the Tri-R2 strain with 69.5-fold resistance, were obtained. Three known mutations, I159V, G433S and Q588R were identified in AChE of two resistant strains, and a novel mutation, G365A, was identified in the more resistant Tri-R2 strain. The modeled 3-D-structure of AChE showed that G365A and G433S are closely adjacent in the gorge above the catalytic site S235. Mutations of G365A and G433S resulted in a steric hindrance by stronger Van der Waals force between two sites. Such a minor structural change might block insecticides from squeezing through the gorge to reach the active site, but not the natural substrate. Compared with the susceptible strain, the AChE activity of the Tri-R1 strain and the Tri-R2 strain was 0.87- and 0.67-fold, the K m value of the Tri-R1 strain and the Tri-R2 strain was 0.11- and 0.10-fold, the V max value of two resistant strains was 0.26- and 0.15-fold, whereas, the I 50 to trichlorfon significantly increased by 9.07- and 13.19-fold. These results suggested that the novel point mutation G365A of AChE might be involved in increasing resistance to trichlorfon in the resistant strain of oriental fruit fly.  相似文献   

4.
Insensitive acetylcholinesterase (AChE) is involved in the resistance of organophosphorous and carbamate insecticides. We cloned a novel full-length AChE cDNA encoding ace1 gene from adult heads of the diamondback moth (DBM, Plutella xylostella). The ace1 gene encoding 679 amino acids has conserved motifs including catalytic triad, choline-binding site and acyl pocket. Northern blot analysis revealed that the ace1 gene was expressed much higher than the ace2 in all examined body parts. The biochemical properties of expressed AChEs showed substrate specificity for acetylthiocholine iodide and inhibitor specificity for BW284C51 and eserine. Three mutations of AChE1 (D229G, A298S, and G324A) were identified in the prothiofos-resistant strain, two of which (A298S and G324A) were expected to be involved in the prothiofos-resistance through three-dimensional modeling. In vitro functional expression of AChEs in Sf9 cells revealed that only resistant AChE1 is less inhibited with paraoxon, suggesting that resistant AChE1 is responsible for prothiofos-resistance.  相似文献   

5.
Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance.  相似文献   

6.
The predatory mite Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae) is one of the most important biocontrol agents of herbivorous mites in European perennial crops. The use of pesticides, such as organophosphate insecticides (OPs), is a major threat to the success of biocontrol strategies based on predatory mites in these cropping systems. However, resistance to OPs in K. aberrans has recently been reported. The present study investigated the target site resistance mechanisms that are potentially involved in OP insensitivity. In the herbivorous mite Tetranychus urticae Koch (Acari: Tetranychidae), resistance to OPs is due to a modified and insensitive acetylcholinesterase (AChE; EC: 3.1.1.7) that bears amino acid substitution F331W (AChE Torpedo numbering). To determine whether the predators and prey have evolved analogous molecular mechanisms to withstand the same selective pressure, the AChE cDNA from a putative orthologous gene was cloned and sequenced from susceptible and resistant strains of K. aberrans. No synonymous mutation coding for a G119S substitution was determined to be strongly associated with the resistant phenotype instead of the alternative F331W. Because the same mutation in T. urticae AChE was not associated with comparable levels of chlorpyrifos resistance, the role of the G119S substitution in defining insensitive AChE in K. aberrans remains unclear. G119S AChE genotyping can be useful in ecological studies that trace the fate of resistant strains after field release or in marker-assisted selection of improved populations of K. aberrans to achieve multiple resistance phenotypes through gene pyramiding. The latent complexity of the target site resistance in K. aberrans vs. that of T. urticae is also discussed in the context of data from the genome project of the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae).  相似文献   

7.
Two amino acid substitutions in acetylcholinesterase 1 (AChE1), G119S and F290V, are responsible for resistance to organophosphate and carbamate insecticides in Culex pipiens mosquitoes. These mutations generate very different levels of insensitivity to insecticide inhibitors. We described here a biochemical method that rapidly identifies AChE1 variants (susceptible, G119S and F290V, named S, R and V, respectively) present in individual mosquitoes. We investigated the frequency of AChE1 phenotypes in 41 field samples collected around the Mediterranean Sea. F290V substitution was found only in 15 samples and at low frequency, whereas G119S was highly spread in all samples. However, seven V distinct alleles were identified whereas only one R allele was present. The [V] enzymatic phenotype was never observed alone, and the V allele was always found associated with the susceptible and/or G119S AChE1 ([VS], [VR] or [VRS] phenotypes). Furthermore, we showed the presence of duplicated alleles, associating a susceptible and a V copy of the ace-1 gene, in most individuals analyzed for its presence. Evolutionary forces driving the large number of F290V ace-1 alleles and their low frequency in Mediterranean countries are discussed.  相似文献   

8.
Acetylcholinesterase (AChE) is a proven target for control of the malaria mosquito (Anopheles gambiae). Unfortunately, a single amino acid mutation (G119S) in An. gambiae AChE-1 (AgAChE) confers resistance to the AChE inhibitors currently approved by the World Health Organization for indoor residual spraying. In this report, we describe several carbamate inhibitors that potently inhibit G119S AgAChE and that are contact-toxic to carbamate-resistant An. gambiae. PCR-RFLP analysis was used to confirm that carbamate-susceptible G3 and carbamate-resistant Akron strains of An. gambiae carry wild-type (WT) and G119S AChE, respectively. G119S AgAChE was expressed and purified for the first time, and was shown to have only 3% of the turnover number (k cat) of the WT enzyme. Twelve carbamates were then assayed for inhibition of these enzymes. High resistance ratios (>2,500-fold) were observed for carbamates bearing a benzene ring core, consistent with the carbamate-resistant phenotype of the G119S enzyme. Interestingly, resistance ratios for two oxime methylcarbamates, and for five pyrazol-4-yl methylcarbamates were found to be much lower (4- to 65-fold). The toxicities of these carbamates to live G3 and Akron strain An. gambiae were determined. As expected from the enzyme resistance ratios, carbamates bearing a benzene ring core showed low toxicity to Akron strain An. gambiae (LC50>5,000 μg/mL). However, one oxime methylcarbamate (aldicarb) and five pyrazol-4-yl methylcarbamates (4a–e) showed good to excellent toxicity to the Akron strain (LC50 = 32–650 μg/mL). These results suggest that appropriately functionalized “small-core” carbamates could function as a resistance-breaking anticholinesterase insecticides against the malaria mosquito.  相似文献   

9.
10.
The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide evidence that both target-site and metabolic mechanisms underlie the resistance of S. frugiperda to pyrethroids and organophosphates.  相似文献   

11.
Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos‐methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance‐associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos‐methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.  相似文献   

12.
Insensitive acetylcholinesterase was identified as a resistance mechanism by comparing biochemical analysis with a laboratory selected monocrotophos resistant cotton bollworm (RR: 200) and the susceptible strain. The cDNA encoding AChE was cloned by the method of RACE (rapid amplification of cDNA ends). The complete AChE gene deduced from the cDNA consisted of a putative signal peptide of 32 amino acid residues, a mature protein of 615 residues, 5' untranslated regions (UTR) of 315 bp and 3' UTR of 324 bp. The coding sequence had a high degree of homology to the AChE from other insect species reported in the GenBank. After comparing analysis of the entire AChE gene sequence from 5 resistant and 6 susceptible cotton bollworm individuals, nine mutations were identified. One of them, the Ala/Thr mutation, is likely to be responsible for the AChE insensitivity to monocrotophos.  相似文献   

13.
In insects, selection of insecticide-insensitive acetylcholinesterase (AChE) is a very common resistance mechanism. Mosquitoes possess both AChE1 and AChE2 enzymes and insensitivity is conferred by single amino-acid changes located near the active site of the synaptic AChE1. Only two positions have been reported so far to be involved in resistance, suggesting a very high structural constraint of the AChE1 enzyme. In particular, the G119S substitution was selected in several mosquitoes' species and is now largely spread worldwide. Yet, a different type of AChE1 insensitivity was described 10 years ago in a Culex pipiens population collected in Cyprus in 1987 and fixed thereafter as the ACE-R strain. We report here the complete amino-acid sequence of the ACE-R AChE1 and show that resistance is associated with a single Phe-to-Val substitution of residue 290, which also lines the active site. Comparison of AChE1 activities of the recombinant F290V protein and ACE-R mosquito extracts confirmed the causal role of the substitution in insensitivity. Biochemical characteristics of the mutated protein indicated that the resistance level varies with the insecticide used. A molecular diagnosis test was designed to detect this mutation and was used to show that it is still present in Cyprus Island.  相似文献   

14.
Target site insensitivity and metabolic resistance mediated by esterases have been previously suggested to be involved in resistance to malathion in a field-derived strain (W) of Ceratitis capitata. In the present study, we have obtained the coding sequence for acetylcholinesterase (AChE) gene (Ccace) of C. capitata. An allele of Ccace carrying only a point mutation Gly328Ala (Torpedo numbering) adjacent to the glutamate of the catalytic triad was found in individuals of the W strain. Adult flies homozygotes for this mutant allele showed reduced AChE activity and less sensitivity to inhibition by malaoxon, showing that target site insensitivity is one of the factors of malathion resistance. In addition, all individuals from the resistant W strain showed reduced aliesterase activity, which has been associated with specific malathion resistance in higher Diptera. However, the alphaE7 gene (CcalphaE7), sequenced in susceptible and resistant individuals, did not carry any of the mutations associated with organophosphorus insecticide resistance in other Diptera. Another esterase mechanism, perhaps a carboxylesterase selective for malathion, in addition to mutant AChE, thus contributes to malathion resistance in C. capitata.  相似文献   

15.
Certain rpsL (which encodes the ribosomal protein S12) mutations that confer resistance to streptomycin markedly activate the production of antibiotics in Streptomyces spp. These rpsL mutations are known to be located in the two conserved regions within the S12 protein. To understand the roles of these two regions in the activation of silent genes, we used site-directed mutagenesis to generate eight novel mutations in addition to an already known (K88E) mutation that is capable of activating antibiotic production in Streptomyces lividans. Of these mutants, two (L90K and R94G) activated antibiotic production much more than the K88E mutant. Neither the L90K nor the R94G mutation conferred an increase in the level of resistance to streptomycin and paromomycin. Our results demonstrate the efficacy of the site-directed mutagenesis technique for strain improvement.  相似文献   

16.
Ma C  Tran J  Li C  Ganesan L  Wood D  Morrissette N 《Genetics》2008,180(2):845-856
Dinitroanilines (oryzalin, trifluralin, ethafluralin) disrupt microtubules in protozoa but not in vertebrate cells, causing selective death of intracellular Toxoplasma gondii parasites without affecting host cells. Parasites containing α1-tubulin point mutations are dinitroaniline resistant but show increased rates of aberrant replication relative to wild-type parasites. T. gondii parasites bearing the F52Y mutation were previously demonstrated to spontaneously acquire two intragenic mutations that decrease both resistance levels and replication defects. Parasites bearing the G142S mutation are largely dependent on oryzalin for viable growth in culture. We isolated 46 T. gondii lines that have suppressed microtubule defects associated with the G142S or the F52Y mutations by acquiring secondary mutations. These compensatory mutations were α1-tubulin pseudorevertants or extragenic suppressors (the majority alter the β1-tubulin gene). Many secondary mutations were located in tubulin domains that suggest that they function by destabilizing microtubules. Most strikingly, we identified seven novel mutations that localize to an eight-amino-acid insert that stabilizes the α1-tubulin M loop, including one (P364R) that acts as a compensatory mutation in both F52Y and G142S lines. These lines have reduced dinitroaniline resistance but most perform better than parental lines in competition assays, indicating that there is a trade-off between resistance and replication fitness.  相似文献   

17.
18.
《Translational oncology》2020,13(2):321-328
BACKGROUND: ESR1 mutations are frequently detected in ER+ MBC, and have been reported to be associated with endocrine therapy resistance. However, there are little researches to validate whether dynamic monitoring of ESR1 mutations could serve as a predictive plasma biomarker of acquired resistance to endocrine therapy. Therefore, in this study, we performed longitudinal circulating tumor DNA (ctDNA) detection to evaluate the clinical implications of monitoring ESR1 mutations. METHODS: We performed longitudinal dynamic mutation analyses of plasma samples from 45 patients with metastatic breast cancer (MBC) and sequencing paired biopsy tissues, using a targeted NGS panel of 425 genes. These patients were treated at the Second Affiliated Hospital of Dalian Medical University between January 2017 and February 2019 with written informed consent. RESULTS: Mutations profiles were highly concordant between plasma and paired tissue samples from 45 MBC patients (r = 0.96, P < 0.0001). ESR1 mutations were enriched in ER+ MBC patients after AI therapy (17.8%, 8/45). The median time from AI endocrine therapies to the initial detection of ESR1 mutation was 39 months (95% CI 21.32–57.57). Some hotspot mutations (Y537S (n = 5), Y537N (n = 1), D538G (n = 2), E380Q (n = 2)) and several rare mutations (L345SfsX7, 24fs, G344delinsGC) were identified in our cohort. In addition, we observed that two patients obtained multiple ESR1 mutations over the course of treatment (Y537N/Y537S/D538G, L345SfsX7/24fs/E380Q). Through dynamically monitoring ESR1 mutations by ctDNA, we demonstrated that the change of allele frequency of ESR1 mutations was an important biomarker, which could predict endocrine resistance of ER+ MBC in our study. We also observed that the combination of everolimus in four cases with acquired ESR1 mutations showed longer PFS than other therapies without everolimus. CONCLUSION: The dynamic monitoring of ESR1 mutations by ctDNA is a promising tool to predict endocrine therapy resistance in ER+ MBC patients.  相似文献   

19.
Acetylcholinesterase resistance has been well documented in many insects, including several mosquito species. We tested the resistance of five wild, Chinese strains of the mosquito Culex pipiens quinquefasciatus to two kinds of pesticides, dichlorvos and propoxur. An acetylcholinesterase gene (ace1) was cloned and sequenced from a pooled sample of mosquitoes from these five strains and the amino acids of five positions were found to vary (V185M, G247S, A328S, A391T, and T682A). Analysis of the correlation between mutation frequencies and resistance levels (LC50) suggests that two point mutations, G247S (r2 = 0.732, P = 0.065) and A328S (r2 = 0.891, P = 0.016), are associated with resistance to propoxur but not to dichlorvos. Although the V185M mutation was not associated with either dichlorvos or propoxur resistance, its RS genotype frequency was correlated with propoxur resistance (r2 = 0.815, P = 0.036). And the HWE test showed the A328S mutation is linked with V185M, also with G247S mutation. This suggested that these three mutations may contribute synergistically to propoxur resistance. The T682A mutation was negatively correlated with propoxur (r2 = 0.788, P = 0.045) resistance. Knowledge of these mutations may help design strategies for managing pesticide resistance in wild mosquito populations.  相似文献   

20.

Objectives

This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture.

Methods

Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations.

Results

C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides.

Conclusions

This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号