共查询到20条相似文献,搜索用时 15 毫秒
1.
Jose F. Ruiz Benjamin Pardo Guillermo Sastre-Moreno Andrés Aguilera Luis Blanco 《PLoS genetics》2013,9(7)
DNA double-strand breaks (DSBs) are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ) can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo. The repair of these breaks in trans could result in reciprocal chromosomal translocations that were dependent on classical Ku-dependent NHEJ. End-joining events leading to translocations were mainly based on the formation of short base pairing between 3′-overhanging DNA ends coupled to gap-filling DNA synthesis. A major proportion of these events were specifically dependent on yeast DNA polymerase Pol4 activity. In addition, we have discovered that Pol4-Thr540 amino acid residue can be phosphorylated by Tel1/ATM kinase, which could modulate Pol4 activity during NHEJ. Our data suggest that the role of Tel1 in preventing break-induced chromosomal translocations can, to some extent, be due to its stimulating effect on gap-filling activity of Pol4 to repair DSBs in cis. Overall, this work provides further insight to the molecular mechanisms of DSB repair by NHEJ and presents a new perspective to the understanding of how chromosomal translocations are formed in eukaryotic cells. 相似文献
2.
Chromosomal Translocations Generated by High-Frequency Meiotic Recombination between Repeated Yeast Genes 总被引:18,自引:16,他引:18 下载免费PDF全文
We have examined meiotic and mitotic recombination between repeated genes on nonhomologous chromosomes in the yeast Saccharomyces cerevisiae. The results of these experiments can be summarized in three statements. First, gene conversion events between repeats on nonhomologous chromosomes occur frequently in meiosis. The frequency of such conversion events is only 17-fold less than the analogous frequency of conversion between genes at allelic positions on homologous chromosomes. Second, meiotic and mitotic conversion events between repeated genes on nonhomologous chromosomes are associated with reciprocal recombination to the same extent as conversion between allelic sequences. The reciprocal exchanges between the repeated genes result in chromosomal translocations. Finally, recombination between repeated genes on nonhomologous chromosomes occurs much more frequently in meiosis than in mitosis. 相似文献
3.
Maika Deffieu Ingrid Bhatia-Ki??ová Bénédicte Salin Anne Galinier Stéphen Manon Nadine Camougrand 《The Journal of biological chemistry》2009,284(22):14828-14837
The antioxidant N-acetyl-l-cysteine prevented the
autophagy-dependent delivery of mitochondria to the vacuoles, as examined by
fluorescence microscopy of mitochondria-targeted green fluorescent protein,
transmission electron microscopy, and Western blot analysis of mitochondrial
proteins. The effect of N-acetyl-l-cysteine was specific
to mitochondrial autophagy (mitophagy). Indeed, autophagy-dependent activation
of alkaline phosphatase and the presence of hallmarks of non-selective
microautophagy were not altered by N-acetyl-l-cysteine.
The effect of N-acetyl-l-cysteine was not related to its
scavenging properties, but rather to its fueling effect of the glutathione
pool. As a matter of fact, the decrease of the glutathione pool induced by
chemical or genetical manipulation did stimulate mitophagy but not general
autophagy. Conversely, the addition of a cell-permeable form of glutathione
inhibited mitophagy. Inhibition of glutathione synthesis had no effect in the
strain Δuth1, which is deficient in selective mitochondrial
degradation. These data show that mitophagy can be regulated independently of
general autophagy, and that its implementation may depend on the cellular
redox status.Autophagy is a major pathway for the lysosomal/vacuolar delivery of
long-lived proteins and organelles, where they are degraded and recycled.
Autophagy plays a crucial role in differentiation and cellular response to
stress and is conserved in eukaryotic cells from yeast to mammals
(1,
2). The main form of autophagy,
macroautophagy, involves the non-selective sequestration of large portions of
the cytoplasm into double-membrane structures termed autophagosomes, and their
delivery to the vacuole/lysosome for degradation. Another process,
microautophagy, involves the direct sequestration of parts of the cytoplasm by
vacuole/lysosomes. The two processes coexist in yeast cells but their extent
may depend on different factors including metabolic state: for example, we
have observed that nitrogen-starved lactate-grown yeast cells develop
microautophagy, whereas nitrogen-starved glucose-grown cells preferentially
develop macroautophagy (3).Both macroautophagy and microautophagy are essentially non-selective, in
the way that autophagosomes and vacuole invaginations do not appear to
discriminate the sequestered material. However, selective forms of autophagy
have been observed (4) that
target namely peroxisomes (5,
6), chromatin
(7,
8), endoplasmic reticulum
(9), ribosomes
(10), and mitochondria
(3,
11–13).
Although non-selective autophagy plays an essential role in survival by
nitrogen starvation, by providing amino acids to the cell, selective autophagy
is more likely to have a function in the maintenance of cellular structures,
both under normal conditions as a “housecleaning” process, and
under stress conditions by eliminating altered organelles and macromolecular
structures
(14–16).
Selective autophagy targeting mitochondria, termed mitophagy, may be
particularly relevant to stress conditions. The mitochondrial respiratory
chain is both the main site and target of
ROS4 production
(17). Consequently, the
maintenance of a pool of healthy mitochondria is a crucial challenge for the
cells. The progressive accumulation of altered mitochondria
(18) caused by the loss of
efficiency of the maintenance process (degradation/biogenesis de
novo) is often considered as a major cause of cellular aging
(19–23).
In mammalian cells, autophagic removal of mitochondria has been shown to be
triggered following induction/blockade of apoptosis
(23), suggesting that
autophagy of mitochondria was required for cell survival following
mitochondria injury (14).
Consistent with this idea, a direct alteration of mitochondrial permeability
properties has been shown to induce mitochondrial autophagy
(13,
24,
25). Furthermore, inactivation
of catalase induced the autophagic elimination of altered mitochondria
(26). In the yeast
Saccharomyces cerevisiae, the alteration of
F0F1-ATPase biogenesis in a conditional mutant has been
shown to trigger autophagy
(27). Alterations of
mitochondrial ion homeostasis caused by the inactivation of the
K+/H+ exchanger was shown to cause both autophagy and
mitophagy (28). We have
reported that treatment of cells with rapamycin induced early ROS production
and mitochondrial lipid oxidation that could be inhibited by the hydrophobic
antioxidant resveratrol (29).
Furthermore, resveratrol treatment impaired autophagic degradation of both
cytosolic and mitochondrial proteins and delayed rapamycin-induced cell death,
suggesting that mitochondrial oxidation events may play a crucial role in the
regulation of autophagy. This existence of regulation of autophagy by ROS has
received molecular support in HeLa cells
(30): these authors showed
that starvation stimulated ROS production, namely H2O2,
which was essential for autophagy. Furthermore, they identified the cysteine
protease hsAtg4 as a direct target for oxidation by
H2O2. This provided a possible connection between the
mitochondrial status and regulation of autophagy.Investigations of mitochondrial autophagy in nitrogen-starved lactate-grown
yeast cells have established the existence of two distinct processes: the
first one occurring very early, is selective for mitochondria and is dependent
on the presence of the mitochondrial protein Uth1p; the second one occurring
later, is not selective for mitochondria, is not dependent on Uth1p, and is a
form of bulk microautophagy
(3). The absence of the
selective process in the Δuth1 mutant strongly delays and
decreases mitochondrial protein degradation
(3,
12). The putative protein
phosphatase Aup1p has been also shown to be essential in inducing mitophagy
(31). Additionally several Atg
proteins were shown to be involved in vacuolar sequestration of mitochondrial
GFP (3,
12,
32,
33). Recently, the protein
Atg11p, which had been already identified as an essential protein for
selective autophagy has also been reported as being essential for mitophagy
(33).The question remains as to identify of the signals that trigger selective
mitophagy. It is particularly intriguing that selective mitophagy is activated
very early after the shift to a nitrogen-deprived medium
(3). Furthermore, selective
mitophagy is very active on lactate-grown cells (with fully differentiated
mitochondria) but is nearly absent in glucose-grown cells
(3). In the present paper, we
investigated the relationships between the redox status of the cells and
selective mitophagy, namely by manipulating glutathione. Our results support
the view that redox imbalance is a trigger for the selective elimination of
mitochondria. 相似文献
4.
5.
Wanfen Xiong Rebecca Knispel Jason MacTaggart Timothy C. Greiner Stephen J. Weiss B. Timothy Baxter 《The Journal of biological chemistry》2009,284(3):1765-1771
During arterial aneurysm formation, levels of the membrane-anchored matrix metalloproteinase, MT1-MMP, are elevated dramatically. Although MT1-MMP is expressed predominately by infiltrating macrophages, the roles played by the proteinase in abdominal aortic aneurysm (AAA) formation in vivo remain undefined. Using a newly developed chimeric mouse model of AAA, we now demonstrate that macrophage-derived MT1-MMP plays a dominant role in disease progression. In wild-type mice transplanted with MT1-MMP-null marrow, aneurysm formation induced by the application of CaCl2 to the aortic surface was almost completely ablated. Macrophage infiltration into the aortic media was unaffected by MT1-MMP deletion, and AAA formation could be reconstituted when MT1-MMP+/+ macrophages, but not MT1-MMP+/+ lymphocytes, were infused into MT1-MMP-null marrow recipients. In vitro studies using macrophages isolated from either WT/MT1-MMP-/- chimeric mice, MMP-2-null mice, or MMP-9-null mice demonstrate that MT1-MMP alone plays a dominant role in macrophage-mediated elastolysis. These studies demonstrate that destruction of the elastin fiber network during AAA formation is dependent on macrophage-derived MT1-MMP, which unexpectedly serves as a direct-acting regulator of macrophage proteolytic activity.Development and progression of abdominal aortic aneurysm (AAA)2 is a complex process that, untreated, can lead to tissue failure, hemorrhage, and death (1). Destruction of the orderly elastin lamellae of the vessel wall is considered the sine qui non of arterial aneurysm formation (2) as adult tissues cannot regenerate normal elastin fibers (3). Moreover, the elastin degradation products are chemotactic for inflammatory cells and serve to amplify the local injury (4). Although several types of elastolytic proteases are elevated in AAA tissue (5-9), studies using murine models of AAA and targeted protease deletion suggest that matrix metalloproteinases (MMPs), particularly the secreted proteases, MMP-2 and MMP-9, play key roles in the pathologic remodeling of the elastin lamellae that lead to AAA (7, 8).Membrane-type 1 MMP (MT1-MMP) is the prototypical member of a family of membrane-tethered MMPs (10). Recent studies indicate that MT1-MMP expression is elevated in human AAA tissues and that infiltrating macrophages are the primary source of the proteinase in aortic lesions (11-13). Although indirect evidence suggests that MT1-MMP may participate in the control of monocyte/macrophage motile responses as well as interactions with the vessel wall during transmigration (14, 15), the role(s) played by MT1-MMP in regulating macrophage proteolytic activity or AAA formation in vivo remains undefined.Using a murine model of AAA and mice with a targeted deletion of MT1-MMP in myelogenous cell populations, we now demonstrate that macrophage-derived MT1-MMP is required for elastin degradation and aneurysm formation. Importantly, macrophages are not dependent on MT1-MMP for infiltrating aortic tissues but instead use the protease to directly regulate their elastolytic potential in an MMP-2- and MMP-9-independent fashion. These studies define a new and unexpected role for MT1-MMP in controlling macrophage elastolytic activity in the in vitro and in vivo settings. 相似文献
6.
7.
8.
Changes in Hexokinase Activity in
Echinochloa
phyllopogon and Echinochloa crus-pavonis in
Response to Abiotic Stress 总被引:1,自引:0,他引:1
Theodore C. Fox Brian J. Green Robert A. Kennedy Mary E. Rumpho 《Plant physiology》1998,118(4):1403-1409
Hexokinase (HXK; EC 2.7.1.1) regulates carbohydrate entry into glycolysis and is known to be a sensor for sugar-responsive gene expression. The effect of abiotic stresses on HXK activity was determined in seedlings of the flood-tolerant plant Echinochloa phyllopogon (Stev.) Koss and the flood-intolerant plant Echinochloa crus-pavonis (H.B.K.) Schult grown aerobically for 5 d before being subjected to anaerobic, chilling, heat, or salt stress. HXK activity was stimulated in shoots of E. phyllopogon only by anaerobic stress. HXK activity was only transiently elevated in E. crus-pavonis shoots during anaerobiosis. In roots of both species, anoxia and chilling stimulated HXK activity. Thus, HXK is not a general stress protein but is specifically induced by anoxia and chilling in E. phyllopogon and E. crus-pavonis. In both species HXK exhibited an optimum pH between 8.5 and 9.0, but the range was extended to pH 7.0 in air-grown E. phyllopogon to 6.5 in N2-grown E. phyllopogon. At physiologically relevant pHs (6.8 and 7.3, N2 and O2 conditions, respectively), N2-grown seedlings retained greater HXK activity at the lower pH. The pH response suggests that in N2-grown seedlings HXK can function in a more acidic environment and that a specific isozyme may be important for regulating glycolytic activity during anaerobic metabolism in E. phyllopogon. 相似文献
9.
10.
11.
Lauren Liddell Glenn Manthey Nicholas Pannunzio Adam Bailis 《Journal of visualized experiments : JoVE》2011,(55)
Genetic variation is frequently mediated by genomic rearrangements that arise through interaction between dispersed repetitive elements present in every eukaryotic genome. This process is an important mechanism for generating diversity between and within organisms1-3. The human genome consists of approximately 40% repetitive sequence of retrotransposon origin, including a variety of LINEs and SINEs4. Exchange events between these repetitive elements can lead to genome rearrangements, including translocations, that can disrupt gene dosage and expression that can result in autoimmune and cardiovascular diseases5, as well as cancer in humans6-9.Exchange between repetitive elements occurs in a variety of ways. Exchange between sequences that share perfect (or near-perfect) homology occurs by a process called homologous recombination (HR). By contrast, non-homologous end joining (NHEJ) uses little-or-no sequence homology for exchange10,11. The primary purpose of HR, in mitotic cells, is to repair double-strand breaks (DSBs) generated endogenously by aberrant DNA replication and oxidative lesions, or by exposure to ionizing radiation (IR), and other exogenous DNA damaging agents. In the assay described here, DSBs are simultaneously created bordering recombination substrates at two different chromosomal loci in diploid cells by a galactose-inducible HO-endonuclease (Figure 1). The repair of the broken chromosomes generates chromosomal translocations by single strand annealing (SSA), a process where homologous sequences adjacent to the chromosome ends are covalently joined subsequent to annealing. One of the substrates, his3-Δ3'', contains a 3'' truncated HIS3 allele and is located on one copy of chromosome XV at the native HIS3 locus. The second substrate, his3-Δ5'', is located at the LEU2 locus on one copy of chromosome III, and contains a 5'' truncated HIS3 allele. Both substrates are flanked by a HO endonuclease recognition site that can be targeted for incision by HO-endonuclease. HO endonuclease recognition sites native to the MAT locus, on both copies of chromosome III, have been deleted in all strains. This prevents interaction between the recombination substrates and other broken chromosome ends from interfering in the assay. The KAN-MX-marked galactose-inducible HO endonuclease expression cassette is inserted at the TRP1 locus on chromosome IV. The substrates share 311 bp or 60 bp of the HIS3 coding sequence that can be used by the HR machinery for repair by SSA. Cells that use these substrates to repair broken chromosomes by HR form an intact HIS3 allele and a tXV::III chromosomal translocation that can be selected for by the ability to grow on medium lacking histidine (Figure 2A). Translocation frequency by HR is calculated by dividing the number of histidine prototrophic colonies that arise on selective medium by the total number of viable cells that arise after plating appropriate dilutions onto non-selective medium (Figure 2B). A variety of DNA repair mutants have been used to study the genetic control of translocation formation by SSA using this system12-14. 相似文献
12.
Diana D. Villarreal Kihoon Lee Angela Deem Eun Yong Shim Anna Malkova Sang Eun Lee 《PLoS genetics》2012,8(11)
Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called “microhomology,” yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements. 相似文献
13.
14.
15.
16.
17.
《Cell cycle (Georgetown, Tex.)》2013,12(6):760-766
The mechanisms of chromosomal translocations in mammalian cells have been largely undefined. Recent progress on the most common translocation in human cancer, t(14;18), highlights interesting issues in DNA structure and in the enzymes involved in the cutting and joining phases of the process. 相似文献
18.
Estimating the Excess Investment in
Ribulose-1,5-Bisphosphate
Carboxylase/Oxygenase in
Leaves of Spring Wheat Grown under Elevated
CO2 下载免费PDF全文
Julian C. Theobald Rowan A.C. Mitchell Martin A.J. Parry David W. Lawlor 《Plant physiology》1998,118(3):945-955
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions. 相似文献
19.
Regulation of rhythmic peaks in levels of endogenous gibberellins (GAs) by photoperiod was studied in the short-day monocot sorghum (Sorghum bicolor [L.] Moench). Comparisons were made between three maturity (Ma) genotypes: 58M (Ma1Ma1, Ma2Ma2, phyB-1phyB-1, and Ma4Ma4 [a phytochrome B null mutant]); 90M (Ma1Ma1, Ma2Ma2, phyB-2phyB-2, and Ma4Ma4); and 100M (Ma1Ma1, Ma2Ma2, PHYBPHYB, and Ma4Ma4). Plants were grown for 14 d under 10-, 14-, 16-, 18-, and 20-h photoperiods, and GA levels were assayed by gas chromatography-mass spectrometry every 3 h for 24 h. Under inductive 10-h photoperiods, the peak of GA20 and GA1 levels in 90M and 100M was shifted from midday, observed earlier with 12-h photoperiods, to an early morning peak, and flowering was hastened. In addition, the early morning peaks in levels of GA20 and GA1 in 58M under conditions allowing early flowering (10-, 12-, and 14-h photoperiods) were shifted to midday by noninductive (18- and 20-h) photoperiods, and flowering was delayed. These results are consistent with the possibility that the diurnal rhythm of GA levels plays a role in floral initiation and may be one way by which the absence of phytochrome B causes early flowering in 58M under most photoperiods. 相似文献
20.
Rodrigo Otávio Silveira Silva Maja Rupnik Amanda Nádia Diniz Eduardo Garcia Vilela Francisco Carlos Faria Lobato 《Memórias do Instituto Oswaldo Cruz》2015,110(8):1062-1065
Clostridium difficile is an emerging enteropathogen responsible for
pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal
species. Despite its known importance, there are few studies aboutC.
difficile polymerase chain reaction (PCR) ribotypes in Brazil and the
actual knowledge is restricted to studies on human isolates. The aim of the study was
therefore to compare C. difficileribotypes isolated from humans and
animals in Brazil. Seventy-six C. difficile strains isolated from
humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one
cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among
toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for
14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes
were detected among human isolates, nine of them have also been identified in at
least one animal species. PCR ribotype 027 was not detected, whereas 078 were found
only in foals. This data suggests a high diversity of PCR ribotypes in humans and
animals in Brazil and support the discussion of C. difficile as a
zoonotic pathogen. 相似文献