首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of developing breast cancer. Epithelial-mesenchymal-transition (EMT) is a process, by which epithelial cells are transdifferentiated to a mesenchymal state, and it has been implicated in cancer progression, including invasion and metastasis. Linoleic acid (LA) induces proliferation and invasion in breast cancer cells. However, the role of LA on the EMT process in human mammary epithelial cells remains to be studied. In the present study, we demonstrate that LA induces a transient down-regulation of E-cadherin expression, accompanied with an increase of Snail1, Snail2, Twist1, Twist2 and Sip1 expressions. Furthermore, LA induces FAK and NFκB activation, MMP-2 and -9 secretions, migration and invasion. In summary, our findings demonstrate, for the first time, that LA promotes an EMT-like process in MCF10A human mammary epithelial cells.  相似文献   

2.
3.
The effects of human interleukin 1 (IL 1) on collagen type IV production by normal mouse mammary epithelial cells were examined. Human IL 1 was derived from the culture media of peripheral blood monocytes or placental cells that were stimulated with silica. Although crude culture media of silica-stimulated monocytes or placental cells had no enhancing activity for type IV collagen production, IL 1-containing fractions obtained by Sephacryl S-200 gel chromatography and isoelectrofocusing from such media possessed considerable activity. To confirm the effects of IL 1 on collagen production, human monocyte-derived IL 1 was highly purified by sequential isoelectrofocusing, anion-exchange (AX 300), high-performance liquid chromatography (HPLC), and HPLC gel filtration (TSK 3000). The same HPLC gel filtration fractions contained both an activity that stimulated collagen synthesis by mammary cells and thymocyte growth-promoting activity. These activities of IL 1 differed from a number of other factors, such as epidermal growth factor and another factor produced by placental cells that stimulated type IV collagen production but not thymocyte proliferation. In fact, IL 1 induced 100-fold less collagen type IV production by mammary epithelial cells than was needed to induce thymocyte proliferation. Our data suggest that IL 1-like molecules, which reportedly are produced by many tissue cell types, may therefore play a role in promoting a basement membrane formation at stromal-epithelial boundaries.  相似文献   

4.
A rat mammary myoepithelial-like cell line (Rama 401) produces 3.5 times more type IV collagen than a mammary epithelial cell line (Rama 25), as measured by the formation of protein hydroxyproline. However, using quantitative "dot" hybridization techniques, the level of poly (A)-containing mRNA hybridizing to a type IV collagen cDNA probe is only 50% higher in Rama 401 cells than in Rama 25 cells. The total amount of hydroxyproline synthesized per cell by the two cell lines is similar. However, in the Rama 25 cells approximately 70% of the hydroxyproline is found as free hydroxyproline against 13% for Rama 401 cells. When Rama 25 cells are grown on collagen gels, they accumulate 2.5-fold more type IV collagen. However, type IV collagen mRNA levels are only 30% higher in Rama 25 cells grown on collagen. The total amount of hydroxyproline synthesized is the same as cells grown on plastic, whereas the extent of collagen degradation is reduced from 71% to 30% in cells grown on collagen gels. No degradation of type IV collagen can be detected in the culture medium of Rama 25 cells. These results indicate that the increased accumulation of type IV collagen in Rama 401 cells is not due to increased synthesis but to a decreased rate of intracellular degradation, and that for Rama 25 cells, the extracellular matrix modulates type IV collagen production by regulating the rate of intracellular collagen degradation.  相似文献   

5.
6.
7.
8.
《The Journal of cell biology》1994,127(6):2021-2036
The secreted polypeptide transforming growth factor-beta (TGF-beta) exerts its multiple activities through type I and II cell surface receptors. In epithelial cells, activation of the TGF-beta signal transduction pathways leads to inhibition of cell proliferation and an increase in extracellular matrix production. TGF-beta is widely expressed during development and its biological activity has been implicated in epithelial-mesenchymal interactions, e.g., in branching morphogenesis of the lung, kidney, and mammary gland, and in inductive events between mammary epithelium and stroma. In the present study, we investigated the effects of TGF-beta on mouse mammary epithelial cells in vitro. TGF-beta reversibly induced an alteration in the differentiation of normal mammary epithelial NMuMG cells from epithelial to fibroblastic phenotype. The change in cell morphology correlated with (a) decreased expression of the epithelial markers E- cadherin, ZO-1, and desmoplakin I and II; (b) increased expression of mesenchymal markers, such as fibronectin; and (c) a fibroblast-like reorganization of actin fibers. This phenotypic differentiation displays the hallmarks of an epithelial to mesenchymal transdifferentiation event. Since NMuMG cells make high levels of the type I TGF-beta receptor Tsk7L, yet lack expression of the ALK-5/R4 type I receptor which has been reported to mediate TGF-beta responsiveness, we evaluated the role of the Tsk7L receptor in TGF-beta- mediated transdifferentiation. We generated NMuMG cells that stably overexpress a truncated Tsk7L type I receptor that lacks most of the cytoplasmic kinase domain, thus function as a dominant negative mutant. These transfected cells no longer underwent epithelial to mesenchymal morphological change upon exposure to TGF-beta, yet still displayed some TGF-beta-mediated responses. We conclude that TGF-beta has the ability to modulate E-cadherin expression and induce a reversible epithelial to mesenchymal transdifferentiation in epithelial cells. Unlike other transdifferentiating growth factors, such as bFGF and HGF, these changes are accompanied by growth inhibition. Our results also implicate the Tsk7L type I receptor as mediating the TGF-beta-induced epithelial to mesenchymal transition.  相似文献   

9.
Bone marrow MSCs (mesenchymal stem cells) can differentiate into various tissue cells, including epithelial cells. This presents interesting possibilities for cellular therapy, but the differentiation efficiency of MSCs is very low. We have explored specific inducing factors to improve the epithelial differentiation efficiency of MSCs. Under inducing conditions, MSCs differentiated into epithelial cells and expressed several airway epithelial markers using RTE (rat tracheal epithelial) cell secretions. Rat cytokine antibody array was used to detect cytokines of the RTE secretion components, in which 32 kinds of protein were found. Seven proteins [TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), VEGF (vascular endothelial growth factor), BDNF (brain-derived neurotrophic factor), TGFβ1 (transforming growth factor β1), MMP-2 (metalloproteinases-2), OPN (osteopontin) and activin A in RTE secretions] were assayed using ELISA kits. The four growth factors (VEGF, BDNF, TGFβ1 and activin A) were involved in regulating stem cell growth and differentiation. We speculated that these four play a vital role in the differentiation of MSCs into epithelial cells by triggering appropriate signalling pathways. To induce epithelial differentiation, MSCs were cultured using VEGF, BDNF, TGFβ1 and activin A. Differentiated MSCs were characterized both morphologically and functionally by their capacity to express specific markers for epithelial cells. The data demonstrated that MSCs can differentiate into epithelial cells induced by these growth factors.  相似文献   

10.

Background  

Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture.  相似文献   

11.
Attachment of cells to basement membrane collagen type IV   总被引:9,自引:8,他引:9       下载免费PDF全文
Of ten different cell lines examined, three showed distinct attachment and spreading on collagen IV substrates, and neither attachment nor spreading was enhanced by adding soluble laminin or fibronectin. This reaction was not inhibited by cycloheximide or antibodies to laminin, indicating a direct attachment to collagen IV without the need of mediator proteins. Cell-binding sites were localized to the major triple-helical domain of collagen IV and required an intact triple helical conformation for activity. Fibronectin showed preferential binding to denatured collagen IV necessary to mediate cell binding to the substrate. Fibronectin binding sites of collagen IV were mapped to unfolded structures of the major triple-helical domain and show a similar specificity to fibronectin-binding sites of collagen I. The data extend previous observations on biologically potential binding sites located in the triple helix of basement membrane collagen IV.  相似文献   

12.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

13.
Many tumor cells are impaired in adhesion-regulated apoptosis, which contributes to their metastatic potential. However, suppression of this apoptotic pathway in untransformed cells is not mediated only by adhesion to the extracellular matrix but also through the resulting ability to spread and adopt a distinct morphology. Since cell spreading is dependent on the integrity of the actin microfilament cytoskeleton, we sought to determine if actin depolymerization was sufficient to induce apoptosis, even in the presence of continuous attachment. For this study, we used a human mammary epithelial cell line (MCF10A), which is immortalized but remains adhesion dependent for survival. Treatment of MCF10A cells with latrunculin-A (LA), an inhibitor of actin polymerization, rapidly led to disruption of the actin cytoskeleton and caused cell rounding but preserved attachment. Initiation of apoptosis in LA-treated MCF10A cells was detected by mitochondrial localization of the Bax apoptotic protein, which was prevented by overexpression of Bcl-2. DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage in LA-treated MCF10A cells indicated progression to the execution phase of apoptosis. The MDA-MB-453 cell line, which was derived from a metastatic human mammary tumor, was resistant to PARP cleavage and loss of viability in response to actin depolymerization. Stable overexpression of Bcl-2 in the untransformed MCF10A cells was able to recapitulate the resistance to apoptosis found in the tumor cell line. We demonstrate that inhibition of actin polymerization is sufficient to stimulate apoptosis in attached MCF10A cells, and we present a novel role for Bcl-2 in cell death induced by direct disruption of the actin cytoskeleton.  相似文献   

14.
15.
16.
Cripto-1 (CR-1) is an epidermal growth factor (EGF)-related protein. CR-1 can inhibit beta-casein and whey acidic protein expression in mouse mammary epithelial cells. The present study demonstrates that CR-1 can induce apoptosis in HC-11 mouse mammary epithelial cells, as measured by bis-benzimide stained nuclei, TUNEL assay and cell death ELISA. Apoptosis could be observed after 2 days of exposure of confluent HC-11 cells to CR-1 in the absence of the survival factors EGF and insulin, with maximum apoptosis occurring at 3 days. A reduction in poly(ADP-ribose) polymerase (PARP) expression and an increase in beta-catenin cleavage was found after 18 h of exposure to CR-1 suggesting that apoptosis was preceded by the induction of a caspase activity since the caspase inhibitor ZFAD.FMK could block the CR-1-induced reduction in PARP expression and CR-1-induced apoptosis. CR-1 was found to increase the expression of caspase-3-like protease. Although, the levels of p27kip1 and p21Bax did not change after exposure to CR-1 for 18 h, the levels of Bcl-xL became undetectable. These studies suggest that CR-1 promotes apoptosis by mediating the induction of caspase-3-like protease and downregulating the expression of Bcl-xL.  相似文献   

17.
During carcinoma progression, tumor cells often undergo changes similar (but not identical) to epithelialmesenchymal transitions in embryonic development. In this study, we demonstrate that experimental stimulation of hyaluronan synthesis in normal epithelial cells is sufficient to induce mesenchymal and transformed characteristics. Using recombinant adenoviral expression of hyaluronan synthase-2, we show that increased hyaluronan production promotes anchorage-independent growth and invasiveness, induces gelatinase production, and stimulates phosphoinositide 3-kinase/Akt pathway activity in phenotypically normal Madin-Darby canine kidney and MCF-10A human mammary epithelial cells. Cells infected with hyaluronan synthase-2 adenovirus also acquired mesenchymal characteristics, including up-regulation of vimentin, dispersion of cytokeratin, and loss of organized adhesion proteins at intercellular boundaries. Furthermore, we show that the transforming effects of two well described agents, hepatocyte growth factor (HGF) and beta-catenin, are dependent on hyaluronan-cell interactions. Perturbation of endogenous hyaluronan polymer interactions by treatment with hyaluronan oligomers is shown here to reverse the transforming effects of HGF and beta-catenin in Madin-Darby canine kidney and MCF-10A human mammary epithelial cells. Also, HGF and beta-catenin induced assembly of hyaluronan-dependent pericellular matrices similar to those surrounding mesenchymal cells. Thus, increased expression of hyaluronan is sufficient to induce epithelial-mesenchymal transition and acquisition of transformed properties in phenotypically normal epithelial cells.  相似文献   

18.
Mouse mammary epithelial cells cultivated on floating collagen gels secrete, as judged by immunoblotting, the full array of caseins found in mouse milk. The secreted caseins are all phosphorylated and have estimated minimum molecular weights (MWs) of 45, 40, 27, and 23 kD in SDS-PAGE. Intracellular caseins of epithelia from collagen gel cultivation or from lactating mammary glands are a combination of mature caseins identical with the secreted molecules and novel caseins whose apparent size in SDS-PAGE is different from the secreted molecules. The novel caseins were shown to be non-phosphorylated species apparently insufficiently mature for secretion. Our data indicate that, with regard to casein expression, cultivation of mouse mammary epithelia on collagen gels essentially duplicates their behavior in the lactating mouse mammary glands.  相似文献   

19.
Summary Mammary tumor epithelial cells from BALB/cfC3H mice were dispersely embedded inside the collagen gels in Ham's F-12 medium containing horse serum. A sustained cell growth leading to a 5- to 10-fold increase in cell number over initial level was observed in less than 2 weeks. The extent of this growth was found to be dependent on serum concentration. However, addition of various protein and steroid hormones, both singly and in combination, to low-serum-containing medium failed to achieve a comparable level of growth to that promoted by higher serum concentration. Mammary tumor cells can now be consistently propagated in primary culture. This investigation was supported by Grants CA05388 and CA09041 awarded by the National Cancer Institute, Department of Health, Education and Welfare, and by cancer research funds of the University of California.  相似文献   

20.
J Yang  R Guzman  J Richards  S Nandi 《In vitro》1980,16(6):502-506
Mammary tumor epithelial cells from BALB/cfC3H mice were dispersely embedded inside the collagen gels in Ham's F-12 medium containing horse serum. A sustained cell growth leading to a 5- to 10-fold increase in cell number over initial level was observed in less than 2 weeks. The extent of this growth was found to be dependent on serum concentration. However, addition of various protein and steroid hormones, both singly and in combination, to low-serum-containing medium failed to achieve a comparable level of growth to that promoted by higher serum concentration. Mammary tumor cells can now be consistently propagated in primary culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号