首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Influenza infection is associated with about 36,000 deaths and more than 200,000 hospitalizations every year in the United States. The continuous emergence of new influenza virus strains due to mutation and re-assortment complicates the control of the virus and necessitates the permanent development of novel drugs and vaccines. The laboratory-based study of influenza requires a reliable and cost-effective method for the propagation of the virus. Here, a comprehensive protocol is provided for influenza A virus propagation in fertile chicken eggs, which consistently yields high titer viral stocks. In brief, serum pathogen-free (SPF) fertilized chicken eggs are incubated at 37 °C and 55-60% humidity for 10 – 11 days. Over this period, embryo development can be easily monitored using an egg candler. Virus inoculation is carried out by injection of virus stock into the allantoic cavity using a needle. After 2 days of incubation at 37 °C, the eggs are chilled for at least 4 hr at 4 °C. The eggshell above the air sac and the chorioallantoic membrane are then carefully opened, and the allantoic fluid containing the virus is harvested. The fluid is cleared from debris by centrifugation, aliquoted and transferred to -80 °C for long-term storage. The large amount (5-10 ml of virus-containing fluid per egg) and high virus titer which is usually achieved with this protocol has made the usage of eggs for virus preparation our favorable method, in particular for in vitro studies which require large quantities of virus in which high dosages of the same virus stock are needed.  相似文献   

3.
The immunogenicity and protective efficacy of formalin-inactivated influenza B/Memphis/1/93 virus vaccines propagated exclusively in Vero cells, MDCK cells, or embryonated chicken eggs (hereafter referred to as eggs) were investigated. Mammalian cell-grown viruses differ from the egg-grown variant at amino acid position 198 (Pro/Thr) in the hemagglutinin gene. The level of neuraminidase activity was highest in egg-grown virus, while MDCK and Vero cell-derived viruses possessed 70 and 90% less activity, respectively. After boosting, each of the vaccines induced high levels of hemagglutinin-inhibiting, neuraminidase-inhibiting, and neutralizing antibodies that provided complete protection from MDCK-grown virus challenge. Mammalian cell-derived virus vaccines induced serum antibodies that were more cross-reactive, while those induced by egg-grown virus vaccines were more specific to the homologous antigen. Enzyme-linked immunospot analysis indicated that cell-grown virus vaccines induced high frequencies of immunoglobulin G (IgG)-producing cells directed against both cell- and egg-grown virus antigens, whereas egg-grown virus vaccine induced higher frequencies of IgG- and IgM-producing cells reacting with homologous antigen and low levels of IgG-producing cells reactive with cell-grown viruses. These studies indicate that influenza B virus variants selected in different host systems can elicit different immune responses, but these alterations had no detectable influence on the protective efficacy of the vaccines with the immunization protocol used in this study.  相似文献   

4.
Influenza viruses of the H2N2 subtype have not circulated among humans in over 40 years. The occasional isolation of avian H2 strains from swine and avian species coupled with waning population immunity to H2 hemagglutinin (HA) warrants investigation of this subtype due to its pandemic potential. In this study we examined the transmissibility of representative human H2N2 viruses, A/Albany/6/58 (Alb/58) and A/El Salvador/2/57 (ElSalv/57), isolated during the 1957/58 pandemic, in the ferret model. The receptor binding properties of these H2N2 viruses was analyzed using dose-dependent direct glycan array-binding assays. Alb/58 virus, which contains the 226L/228S amino acid combination in the HA and displayed dual binding to both alpha 2,6 and alpha 2,3 glycan receptors, transmitted efficiently to naïve ferrets by respiratory droplets. Inefficient transmission was observed with ElSalv/57 virus, which contains the 226Q/228G amino acid combination and preferentially binds alpha 2,3 over alpha 2,6 glycan receptors. However, a unique transmission event with the ElSalv/57 virus occurred which produced a 226L/228G H2N2 natural variant virus that displayed an increase in binding specificity to alpha 2,6 glycan receptors and enhanced respiratory droplet transmissibility. Our studies provide a correlation between binding affinity to glycan receptors with terminal alpha 2,6-linked sialic acid and the efficiency of respiratory droplet transmission for pandemic H2N2 influenza viruses.  相似文献   

5.
The affinity of the duck, chicken, and human influenza viruses to the host cell sialosides was determined, and considerable distinctions between duck and chicken viruses were found. Duck viruses bind to a wide range of sialosides, including the short-stem gangliosides. Most of the chicken viruses, like human ones, lose the ability to bind these gangliosides, which strictly correlates with the appearance of carbohydrate at position 158–160. The affinity of the chicken viruses to sialoglycoconjugates of chicken intestine as well as chicken, monkey, and human respiratory epithelial cells exceeds that of the duck viruses. The human influenza viruses have high affinity to the same cells but do not bind at all to the duck epithelial cell. This testifies to the absence of 6"-sialylgalactose residues from the duck cells, in contrast to chicken and monkey cells. The alteration of the receptor specificity of chicken viruses in comparison with duck ones results in the similarity of the patterns of accessible cells for chicken and human influenza viruses. This may be the cause of the appearance of the line of H9N2 viruses from Hong Kong live bird markets with receptor specificity similar to that of H3N2 human viruses, and of the ability of H5N1 and H9N2 chicken influenza viruses to infect humans.  相似文献   

6.
H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans.  相似文献   

7.
The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.  相似文献   

8.
The continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, α2,6-linked sialic acids (SA), and being able to transmit efficiently among humans is a constant threat to human health. Different studies have described amino acid substitutions in hemagglutinin (HA) of clinical HPAI H5N1 isolates or that were introduced experimentally that resulted in an increased, but not exclusive, binding of these virus strains to α2,6-linked SA. We introduced all previously described amino acid substitutions and combinations thereof into a single genetic background, influenza virus A/Indonesia/5/05 HA, and tested the receptor specificity of these 27 mutant viruses. The attachment pattern to ferret and human tissues of the upper and lower respiratory tract of viruses with α2,6-linked SA receptor preference was then determined and compared to the attachment pattern of a human influenza A virus (H3N2). At least three mutant viruses showed an attachment pattern to the human respiratory tract similar to that of the human H3N2 virus. Next, the replication efficiencies of these mutant viruses and the effects of three different neuraminidases on virus replication were determined. These data show that influenza virus A/Indonesia/5/05 potentially requires only a single amino acid substitution to acquire human receptor specificity, while at the same time remaining replication competent, thus suggesting that the pandemic threat posed by HPAI H5N1 is far from diminished.Influenza A virus is a negative-strand RNA virus with a segmented genome within the family of Orthomyxoviridae. Influenza A viruses are divided into subtypes based on the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Currently, 16 subtypes of HA and 9 subtypes of NA have been identified in the natural reservoir of all influenza A viruses, wild aquatic birds (24). Occasionally, viruses from this reservoir cross the species barrier into mammals, including humans. When animal influenza viruses are introduced in humans, the spread of the virus is generally limited but may on occasion result in sustained human-to-human transmission. Three influenza A virus subtypes originating from the wild bird reservoir—H1, H2, and H3—have formed stable lineages in humans, starting off with a pandemic and subsequently causing yearly influenza epidemics. In the 20th century, three such pandemics have occurred, in 1918 (H1N1), 1957 (H2N2), and 1968 (H3N2). In 2009, the swine-origin H1N1 virus caused the first influenza pandemic of the 21st century (23).Efficient human-to-human transmission is a prerequisite for any influenza A virus to become pandemic. Currently, the determinants of efficient human-to-human transmission are not completely understood. However, it is believed that a switch of receptor specificity from α2,3-linked sialic acids (SA), used by avian influenza A viruses, to α2,6-linked SA, used by human influenza viruses, is essential (6, 17, 31). It has been shown that the difference in receptor use between avian and human influenza A viruses combined with the distribution of the avian and human virus receptors in the human respiratory tract results in a different localization of virus attachment (26, 33-35). Human viruses attach more abundantly to the upper respiratory tract and trachea, whereas avian viruses predominantly attach to the lower respiratory tract (5, 33-35). Theoretically, the increased presence of virus in the upper respiratory tract, due to the specificity of human influenza A viruses for α2,6-linked SA, could facilitate efficient transmission.Since 1997, highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Southeast Asia and has spread westward to Europe, the Middle East, and Africa, resulting in outbreaks of HPAI H5N1 virus in poultry and wild birds and sporadic human cases of infection in 15 different countries (38). The widespread, continuous circulation of the HPAI H5N1 strain has spiked fears that it may acquire specificity for α2,6-linked SA, potentially resulting in a pandemic. Given the currently high case fatality rate of HPAI H5N1 virus infection in humans of ca. 60%, the effect of such a pandemic on the human population could be devastating. In recent years, several amino acid substitutions in HA of HPAI H5N1 viruses have been described, either in virus isolates from patients or introduced experimentally, that increased the binding of the HPAI H5N1 HA to α2,6-linked SA (1, 2, 10, 14, 16, 29, 39, 40). However, none of the described substitutions conferred a full switch of receptor specificity from α2,3-linked SA to α2,6-linked SA and the substitutions were described in virus strains of different geographical origins. Furthermore, it is unknown whether these substitutions led to increased attachment of the virus to cells of the upper respiratory tract, the primary site of replication of human influenza A viruses.Here, we have introduced all of the 21 previously described amino acid substitutions or combinations thereof that changed the receptor specificity of HPAI H5N1 virus strains and six additional combinations not previously described, into HA of influenza virus A/Indonesia/5/05 (IND05). Indonesia is the country that has the highest cumulative number of human cases of HPAI H5N1 virus infection (38). The receptor specificity of 27 mutant H5N1 viruses was determined and the attachment pattern of a subset of these viruses to tissues of the respiratory tract of ferret and human was determined and compared to the attachment pattern of human influenza A virus (H3N2). Subsequently, the role of NA in efficient replication of these mutant viruses was investigated. The data presented here show that receptor specificity of HA of the IND05 virus can be changed by introducing a single amino acid substitution in the receptor-binding domain, resulting in replication competent viruses that attach abundantly to the human upper respiratory tract.  相似文献   

9.
The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.  相似文献   

10.
The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population.  相似文献   

11.
鸡源H9N2亚型流行性感冒病毒神经氨酸酶基因序列分析   总被引:7,自引:0,他引:7  
对1996~2001年间自中国部分养鸡场发病鸡或死亡鸡分离鉴定的8株H9N2亚型禽流感病毒的神经氨酸酶基因(NA),进行了扩增和序列测定,并分析和比较了其核苷酸和氨基酸的同源性.结果表明,NA基因核苷酸和氨基酸同源性分别为97.1%~99.8%和95.7%~99.7%,说明NA基因稳定遗传,高度保守.与A/chicken/HongKong/G9/97相比较,发现中国大陆鸡源H9N2分离株的神经氨酸酶蛋白在其茎部的第63、64、65位点上都有3个氨基酸的丢失,而与中国邻近的韩国、巴基斯坦鸡源H9N2分离株的神经氨酸酶没有氨基酸的丢失,因此这些部位的氨基酸丢失可初步认为是中国大陆H9N2流感病毒分离株的一个标记.系统进化树分析表明,该8株病毒的NA基因属于相同的进化分支,即A/duck/HongKong/Y280/97-like分支,尚未发现NA基因属于A/quail/HongKong/G1/97-like分支的分离株.中国的H9N2分离株与韩国、巴基斯坦等地的H9N2分离株隶属于不同的进化亚分支,说明H9N2亚型禽流感的发生与流行和地域有一定的相关性.  相似文献   

12.
Several live attenuated influenza virus A/California/7/09 (H1N1) (CA09) candidate vaccine variants that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the CA09 virus and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (H2N2) virus were generated by reverse genetics. The reassortant viruses replicated relatively poorly in embryonated chicken eggs. To improve virus growth in eggs, reassortants expressing the HA and NA of CA09 were passaged in MDCK cells and variants exhibiting large-plaque morphology were isolated. These variants replicated at levels approximately 10-fold higher than the rate of replication of the parental strains in embryonated chicken eggs. Sequence analysis indicated that single amino acid changes at positions 119, 153, 154, and 186 were responsible for the improved growth properties in MDCK cells and eggs. In addition, the introduction of a mutation at residue 155 that was previously shown to enhance the replication of a 1976 swine influenza virus also significantly improved the replication of the CA09 virus in eggs. Each variant was further evaluated for receptor binding preference, antigenicity, attenuation phenotype, and immunogenicity. Mutations at residues 153, 154, and 155 drastically reduced viral antigenicity, which made these mutants unsuitable as vaccine candidates. However, changes at residues 119 and 186 did not affect virus antigenicity or immunogenicity, justifying their inclusion in live attenuated vaccine candidates to protect against the currently circulating 2009 swine origin H1N1 viruses.Human infections with the swine origin influenza virus A (H1N1) were first detected in April 2009 and spread across the globe, resulting in WHO declaring a pandemic on 12 June 2009 for the first time in the past 41 years. More than 296,471 people have had confirmed infections with this novel H1N1 virus, and there have been at least 3,486 deaths as of September 18, 2009. In the last century, an influenza H1N1 virus caused the devastating 1918-1919 pandemic; this pandemic was characterized by a mild outbreak in the spring of 1918, followed by a lethal wave globally in the fall of that year which killed as many as 50 million people worldwide (20, 29). The 2009 H1N1 viruses circulating globally since April 2009 have not caused a significant rise in mortality related to influenza. Nucleotide sequence analysis suggested that E627 in PB2, a deletion of the PDZ ligand domain in NS1, and the lack of the PB1-F2 open reading frame in the 2009 H1N1 viruses may contribute to the relatively mild virulence (20, 26, 27). Recent animal studies have shown that the 2009 H1N1 influenza viruses did not replicate in tissues beyond the respiratory tract and did not cause significant mortality in the ferret model; however, the 2009 H1N1 viruses are capable of infecting deep in the lung tissues and caused more significant lesions in the lung tissues of animals, including nonhuman primates, than typical seasonal strains (13, 17, 19). Children and young adults are particularly susceptible to the 2009 H1N1 virus infection because they have no or low immunity to the novel 2009 H1N1 strains (11, 13). The widespread and rapid distribution of the 2009 H1N1 viruses in humans raises a concern about the evolution of more virulent strains during passage in the population. One fear is that mutant forms of the 2009 H1N1 viruses may exhibit significantly increased virulence (2, 19). Therefore, there is an urgent need to develop an effective vaccine to control the influenza pandemic caused by the swine origin H1N1 viruses.Live attenuated influenza vaccine (LAIV) has been licensed in the United States annually since 2003. The seasonal vaccine protects against influenza illness and elicits both systemic and mucosal immune responses, including serum hemagglutination inhibition (HAI) antibodies that react to antigenically drifted strains (3, 4). A critical attribute of an effective pandemic vaccine is its capability to elicit an immune response in immunonaive individuals; LAIV has been shown to offer protection following a single dose in young children. However, two doses of vaccines are recommended for children younger than 9 years of age who have never been immunized with influenza vaccines. In order to produce LAIV to protect against the newly emerged swine origin H1N1 influenza virus, we have produced several 6:2 reassortant candidate vaccine strains that express the hemagglutinin (HA) and neuraminidase (NA) gene segments from influenza virus A/California/4/09 (A/CA/4/09) (H1N1) or A/CA/7/09 (H1N1), as well as the six internal protein gene segments (PB1, PB2, PA, NP, M, and NS) from cold-adapted A/Ann Arbor/6/60 (H2N2) (AA60) virus, which is the master donor virus for all influenza virus A strains in trivalent seasonal LAIV. Initial evaluation of these candidate vaccine strains indicated that they did not replicate as efficiently as seasonal H1N1 influenza vaccine strains in embryonated chicken eggs. In this report, we describe directed modifications of the HA gene segment that improved vaccine yields in eggs, resulting in a number of vaccine candidates that are available for human use.  相似文献   

13.
14.
Two ferret-adapted H5N1 viruses capable of respiratory droplet transmission have been reported with mutations in the hemagglutinin receptor-binding site and stalk domains. Glycan microarray analysis reveals that both viruses exhibit a strong shift toward binding to “human-type” α2-6 sialosides but with notable differences in fine specificity. Crystal structure analysis further shows that the stalk mutation causes no obvious perturbation of the receptor-binding pocket, consistent with its impact on hemagglutinin stability without affecting receptor specificity.  相似文献   

15.
Interspecies transmission (host switching/jumping) of influenza viruses is a key scientific question that must be addressed. In addition to the vigorous research on highly pathogenic avian influenza viruses (HPAIVs), studies of the mechanism of interspecies transmission of low-pathogenic avian influenza viruses (LPAIVs) could also provide insights into host tropism and virulence evolution. Influenza A viruses harboring hemagglutinin (HA) H13 (e.g., H13N6) are LPAIVs. In this study, soluble H13 HA glycoprotein was purified, and its receptor binding activity was characterized. The results revealed that H13 exclusively binds the avian α2-3-linked sialic acid receptor; no binding to the mammalian α2-6-linked sialic acid receptor was detected. Furthermore, the molecular basis of the H13 receptor binding specificity was revealed by comparative analysis of the crystal structures of both receptor-bound H13 and H5 HAs, which might be contributed by the hydrophobic residue V186. Work with an H13N186 mutant confirmed the importance of V186 in the receptor binding specificity of H13 HA, which shows that the mutant protein reduced the binding of an avian receptor analog but increased the binding of a human receptor analog. Detailed structural analysis also demonstrated that the conserved binding sites of the recently well-studied broadly neutralizing human monoclonal antibodies targeting the HA2 domain are found in H13. Our results expand our understanding of virulence evolution, receptor binding preference, and species tropism of the LPAIVs and HPAIVs.  相似文献   

16.
H1N1 viruses in which all gene segments are of avian origin are the most frequent cause of influenza pandemics in humans; therefore, we examined the disease-causing potential of 31 avian H1N1 isolates of American lineage in DBA/2J mice. Thirty of 31 isolates were very virulent, causing respiratory tract infection; 22 of 31 resulted in fecal shedding; and 10 of 31 were as pathogenic as the pandemic 2009 H1N1 viruses. Preliminary studies in BALB/cJ mice and ferrets showed that 1 of 4 isolates tested was more pathogenic than the pandemic 2009 H1N1 viruses in BALB/cJ mice, and 1 of 2 strains transmitted both by direct and respiratory-droplet contact in ferrets. Preliminary studies of other avian subtypes (H2, H3, H4, H6, H10, H12) in DBA/2J mice showed lower pathogenicity than the avian H1N1 viruses. These findings suggest that avian H1N1 influenza viruses are unique among influenza A viruses in their potential to infect mammals.  相似文献   

17.
It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.  相似文献   

18.
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome seq...  相似文献   

19.
20.
Despite great efforts to control the infection of poultry with H5N1 viruses, these pathogens continue to evolve and spread in nature, threatening public health. Elucidating the characteristics of H5N1 avian influenza virus will benefit disease control and pandemic preparation. Here, we sequenced the genomes of 15 H5N1 avian influenza viruses isolated in Vietnam in 2006 and 2007 and performed phylogenetic analyses to compare these sequences with those of other viruses available in the public databases. Molecular characterization of the H5N1 viruses revealed that seven genetically distinct clades of H5N1 viruses have appeared in Vietnam. Clade 2.3.4 viruses existed in Vietnam as early as 2005. Fifteen viruses isolated during 2006 and 2007 belonged to clade 1 and clade 2.3.4, and were divided into five genotypes. Reassortants between the clade 1 and clade 2.3.4 viruses were detected in both North and South Vietnam. We also assessed the replication and pathogenicity of these viruses in mice and found that these isolates replicated efficiently and exhibited distinct virulence in mice. Our results provide important information regarding the diversity of H5N1 viruses in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号