首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycolate oxidase was isolated from Medicago falcata Linn. after a screening from 13 kinds of C3 plant leaves, with higher specific activity than the enzyme from spinach. The M. falcata glycolate oxidase (MFGO) was partially purified and then immobilized onto hydrothermally synthesized magnetic nanoparticles via physical adsorption. The magnetic nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The maximum load of MFGO was 56 mg/g support and the activity recovery was 45%. Immobilization of MFGO onto magnetic nanoparticles enhanced the enzyme stability, and the optimum temperature was significantly increased from 15 °C to 30 °C. The immobilized biocatalyst was successfully used in a batch reactor for repeated oxidization of glycolic acid to synthesize glyoxylic acid, retaining ca. 70% of its initial activity after 4 cycles of reaction at 30 °C for nearly 70 h, and its half-life was calculated to be 117 h.  相似文献   

2.
Enzyme immobilization on magnetic nanoparticles (MNPs) has been a field of intense studies in biotechnology during the past decade. The present study suggests MNPs negatively charged by docusate sodium salt (AOT) as a support for pectinase immobilization. AOT is a biocompatible anionic surfactant which can stabilize MNPs. Electrostatic adsorption can occur between enzyme with positive charge and oppositely charged surface of MNPs (ca. 100 nm). The effect of three factors, i.e. initial enzyme concentration, aqueous pH and AOT concentration in different levels was investigated on pectinase immobilization. Maximum specific activity (1.98 U/mg enzyme) of immobilized pectinase and maximum enzyme loading of 610.5 mg enzyme/g support was attained through the experiments. Initial enzyme concentration is significantly important on both loading and activity of immobilized enzyme, while pH and AOT concentration only affect the amount of immobilized enzyme. Immobilized enzyme on MNPs was recovered easily through magnetic separation. At near pH of immobilization, protein leakage in reusability of immobilized enzyme was low and activity loss was only 10–20% after six cycles. Since pH is associated with immobilization by electrostatic adsorption, the medium pH was changed to improve the release of protein from the support, as well. MNPs properties were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, and Dynamic Light Scattering (DLS) analysis.  相似文献   

3.
d-Amino acid oxidase from Rhodosporidium toruloides (RtDAO) and Fe3O4 magnetic nanoparticles were encapsulated simultaneously within biomimetic silica, as mediated by polyallylamine. The capacity for this enzyme reached 193 mg/g of biomimetic silica when 15 mg/ml RtDAO was used during encapsulation; the average encapsulation efficiency was approximately 74%. The Tm value (the temperature at which 50% of the initial activity was retained after 1 h of incubation) was increased from 44.3 °C of the free RtDAO to 57.7 °C, clearly indicating the thermal stability was improved by encapsulation. In the presence of 50 mM hydrogen peroxide, encapsulated RtDAO had a half-life of 148 min, an approximately 2-fold increase in resistance to hydrogen peroxide as compared to 78-min half-life of the free form. The encapsulation process is simple and can be completed within minutes; besides, the resultant enzymes can be recovered easily under magnetic field. Such preparation of encapsulated d-amino acid oxidase could be exploited for many potential applications.  相似文献   

4.
Negatively charged 4 nm bimetallic NiII–FeIII cyanide-bridged nanoparticles were obtained and isolated by different coating agents. The magnetic properties of the particles were studied in the powder form and in diluted samples. A spin-glass like behaviour occurs in the concentrated sample, while the magnetic behaviour of the diluted ones strongly depends on the method used to isolate the nanoparticles. Only high dilution in a polymer matrix leads to a single-domain superparamagnetic behaviour, with a blocking temperature of 3.5 K.  相似文献   

5.
Human-β-defensins HBD-1–3 are important components of the innate immune system. Synthetic peptides Phd-1–3 with a single disulphide bond, spanning the cationic C-terminal region of HBD-1–3, have antimicrobial activity. The interaction of Phd-1–3 with model membranes was investigated using isothermal titration calorimetry (ITC) and steady-state fluorescence polarization to understand the biophysical basis for the mechanism of antimicrobial action. Calorimetric titration of POPE:POPG (7:3) vesicles with peptides at 25 °C and 37 °C showed complex profiles with two distinct regions of heat changes. The data indicate binding of Phd-1–3 at 37 °C to both negative and zwitterionic lipid vesicles is exothermic with low enthalpy values (ΔH ~ ? 1.3 to ? 2.8 kcal/mol) as compared to amphipathic helical antibacterial peptides. The adsorption of peptides to negatively charged lipid membranes is modulated by electrostatic interactions that are described by surface partition equilibrium model using Gouy–Chapman theory. However, this model could not explain the isotherms of peptide binding to zwitterionic lipid vesicles. Fluorescence polarization of TMA-DPH (1-[4-(trimethylammonio) phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene) located in the head group and acyl chain region respectively, indicates that the peptides interact with interfacial region of negatively charged membranes. Based on the results obtained, we conclude that adsorption of cationic peptides Phd-1–3 on lipid surface do not result in conformational change or pore formation. It is proposed that interaction of Phd-1–3 with the negatively charged lipid head group causes membrane destabilization, which in turn affects the efficient functioning of cytoplasmic membrane proteins in bacteria, resulting in cell death.  相似文献   

6.
ObjectiveTo determine the effect of phytic acid, tannic acid and pectin on fasting non-heme iron bioavailability in both the presence and absence of calcium.Research methodsTwenty-eight apparently healthy adult females participated in two iron absorption studies using radioactive iron isotopes (59Fe and 55Fe). One group received 5 mg of iron (as FeSO4) alone (control), together with 10 mg of phytic acid, 100 mg of tannic acid and 250 mg of pectin (study A), on different days. The second group received the same iron doses and compounds as the other group, plus 800 mg of calcium (CaCl2) (study B). The compounds were administered after an overnight fast, and no food or beverages were consumed for the following 3 h. Iron status and circulating radioactivity were measured in venous blood samples.ResultsThe geometric means of iron bioavailability (range ± 1SD) for iron alone, iron with phytic acid, iron with tannic acid, and iron with citrus pectin were 25.0% (11.9–52.0); 18.9% (9.9–35.8); 16.8% (8.7–32.3); and 21.1% (10.2–43.9), respectively (repeated-measures ANOVA, p < 0.02 (Dunnett's post hoc: control vs tannic acid p < 0.05). When 800 mg of calcium was added (study B), iron bioavailability was 16.7% (10.1–27.5); 13.2% (7.1–24.6); 14.8% (8.8–25.1); and 12.6% (5.5–28.8), respectively (repeated-measures ANOVA, NS).ConclusionsTannic acid decreases the fasting bioavailability of non-heme iron, however this effect did not exist in the presence of calcium. No effect was observed by phytic acid or citrus pectin on fasting non-heme iron bioavailability in both the presence and absence of calcium.  相似文献   

7.
During intra-erythrocytic maturation, malaria parasites catabolize up to 80% of cellular haemoglobin. Haem is liberated inside the parasite and converted to haemozoin, preventing haem iron from participating in cell-damaging reactions. Several experimental techniques exploit the relatively large paramagnetic susceptibility of malaria-infected cells as a means of sorting cells or investigating haemoglobin degradation, but the source of the dramatic increase in cellular magnetic susceptibility during parasite growth has not been unequivocally determined. Plasmodium falciparum cultures were enriched using high-gradient magnetic fractionation columns and the magnetic susceptibility of cell contents was directly measured. The forms of haem iron in the erythrocytes were quantified spectroscopically. In the 3D7 laboratory strain, the parasites converted approximately 60% of host cell haemoglobin to haemozoin and this product was the primary source of the increase in cell magnetic susceptibility. Haemozoin iron was found to have a magnetic susceptibility of (11.0 ± 0.9) × 10? 3 mL mol? 1. The calculated volumetric magnetic susceptibility (SI units) of the magnetically enriched cells was (1.88 ± 0.60) × 10? 6 relative to water while that of uninfected cells was not significantly different from water. Magnetic enrichment of parasitised cells can therefore be considered dependent primarily on the magnetic susceptibility of the parasitised cells.  相似文献   

8.
The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using waste pomace of olive oil factory (WPOOF). Batch kinetic studies were performed in order to investigate the adsorbent and adsorbate dose, solution pH, agitating speed and temperature. The maximum Ni(II) adsorption was obtained at pH 4.0. The equilibrium nature of Ni(II) adsorption at different temperature was described by the Freundlich, Langmuir and Temkin isotherms. The equilibrium data fit well the Temkin and Langmuir isotherm. The monolayer adsorption capacities of WPOOF as obtained from Langmuir isotherm at 60 °C was found to be 14.80 mg/g. The adsorption mechanism was examined by the FTIR technique. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous (ΔG < 0), slightly endothermic (ΔH > 0) and irreversible (ΔS > 0). The pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion kinetic models were used to describe the kinetic data.  相似文献   

9.
Poly(hydroxyethyl methacrylate) (PHEMA) nanoparticles with an average size of 300 nm in diameter and with a polydispersity index of 1.156 were produced by surfactant free emulsion polymerization. Specific surface area of the PHEMA nanoparticles was found to be 996 m2/g. Metal-chelating ligand 3-(2-imidazoline-1-yl)propyl(triethoxysilane) (IMEO) was covalently attached to the PHEMA nanoparticles. IMEO content was 0.97 mmol IEMO/g. The morphology and properties of these nanoparticles were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. The Cu2+-chelated PHEMA–IMEO nanoparticles were used in the adsorption-elution studies of human serum albumin (HSA) in a batch system. Maximum HSA adsorption amount of the Cu2+ chelated nanoparticles was 680 mg HSA/g. The PHEMA–IMEO–Cu2+ nanoparticles exhibited a quite high adsorption capacity and fast adsorption rate due to their high specific surface area and the absence of internal diffusion resistance.  相似文献   

10.
BackgroundMineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe3 + sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens.MethodsSAMNs were applied for mimicking Fe3 + ions in solution, acting as magnetically drivable probes to evaluate putative Fe3 + recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV–Vis spectroscopy and mass spectrometry.ResultsThe whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores.ConclusionsIn the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation.General significanceThe present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms.  相似文献   

11.
This study provides the first proof of the novel application of bismuth oxide as a radiosensitiser. It was shown that on the highly radioresistant 9L gliosarcoma cell line, bismuth oxide nanoparticles sensitise to both kilovoltage (kVp) or megavoltage (MV) X-rays radiation. 9L cells were exposed to a concentration of 50 μg.mL−1 of nanoparticle before irradiation at 125 kVp and 10 MV. Sensitisation enhancement ratios of 1.48 and 1.25 for 125 kVp and 10 MV were obtained in vitro, respectively. The radiation enhancement of the nanoparticles is postulated to be a combination of the high Z nature of the bismuth (Z = 83), and the surface chemistry. Monte Carlo simulations were performed to elucidate the physical interactions between the incident radiation and the nanoparticle. The results of this work show that Bi2O3 nanoparticles increase the radiosensitivity of 9L gliosarcoma tumour cells for both kVp and MV energies. Monte Carlo simulations demonstrate the advantage of a platelet morphology.  相似文献   

12.
This study investigated the potential of using a mixture of fishpond bund material, completely decomposed granite and river sand as substrate in a constructed wetland for phosphorus removal. Core samples were collected from the newly constructed Hong Kong Wetland Park (HKWP) receiving influent stormwater from a nearby new town, and batch incubation experiments were conducted to determine the P sorption characteristics of sediments. The HKWP sediments adsorbed the majority of available P in the initial 20 min of incubation, with a first-order rate constant of 1.01–2.11 h?1. Sediments in the reedbeds and freshwater marshes possessed a great capacity for P adsorption with the high Langmuir sorption maxima (478–858 mg kg?1) and Freundlich adsorption constants (417–672 L kg?1) obtained, attributable to the high amorphous iron and aluminium concentrations compared to other constructed wetlands. Moreover, sediment equilibrium P concentrations were generally low (4.6–23.6 μg L?1), facilitating a net P adsorption by sediments under moderate P loadings. Yet, the amount of P adsorbed by the HKWP sediments was limited by the low ambient porewater P concentrations and there was even a risk of P desorption when sediments in the freshwater marshes were resuspended into the water column. While substrates in the HKWP demonstrated a great potential for P adsorption, consideration should also be given to P loadings in influent water to fully utilize the P sorption capacity of sediments and enhance the P removal efficiency of constructed wetlands.  相似文献   

13.
The frustule of diatoms, through appropriate chemical modification, can be developed for a high adsorption level of recombinant proteins and viral nanoparticles. Field emission scanning electron microscopy (FE-SEM) analysis of clean frustules revealed a 3D loculate areolae structure (valvar phase porous pattern of the siliceous cell wall). Isocyanatopropyl triethoxysilane (IPS) and iminodiacetic acid (IDA) were used to immobilize Cu2+ ions (an average Cu2+ adsorption capacity about 190 μmol of Cu2+/ml of the Cu2+-coupled biosilica reached). FE-SEM, energy dispersion X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) were used to confirm the chemical modification of the Cu2+-coupled biosilica. Protein adsorption was confirmed with the detection of a recombinant (His)6-tagged green fluorescent protein binding using fluorescent microscopy. Infectious bursal disease virus VP2-441 subviral particles (SVPs) were found to bind to the Cu2+-coupled biosilica (approximately 3 × 10?9 mol of VP2-441 SVPs/ml of modified frustules), a level higher than the previously obtained 9 × 10?10 mol/ml for SVP binding using a commercial Ni–NTA resin. These give diatom frustules the potential to be developed into a material useful in viral nanoparticle purification systems or as a biosensor for the detection of viruses.  相似文献   

14.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

15.
BackgroundThis work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA.MethodsSFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS.ResultsThe SFP-FA have zeta potential below − 6 mW and stable hydrodynamic diameter close to 100 nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22–27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells.ConclusionsThe present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis.General significanceComposition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.  相似文献   

16.
A marine, unicellular cyanobacterium, Synechococcus elongatus strain BDU/75042 was found to sequester uranium from aqueous systems at pH 7.8. The organism could remove 72% (53.5 mg U g?1 dry weight) of uranium from test solutions containing 100 μM uranyl carbonate within 1 h. The equilibrium data fitted well in the Langmuir isotherm thus suggesting a monolayer adsorption of uranium on the cyanobacterial biomass and predicted the maximum adsorption capacity of 124 mg U g?1 dry weight. Light and scanning electron microscopy coupled with energy dispersive X-ray fluorescence (EDXRF) spectroscopy confirmed the uranyl adsorption by this organism. Most of the bound uranium was found to be associated with the extracellular polysaccharides (EPS) suggesting its interaction with the surface active ligands. Fourier transform infrared (FT-IR) spectroscopy suggested the amide groups and the deprotonated carboxyl groups on the cyanobacterial cell surface were likely to be involved in uranyl adsorption. The cell bound uranium could be released by washing with ethylene diamine tetraacetic acid (EDTA) or 0.1 N HCl. The X-ray diffraction (XRD) analyses revealed the identity of uranium deposits associated with the cell biomass as uranyl carbonate hydrate. The study revealed the potential of this cyanobacterium for harvesting uranium from natural aquatic environments.  相似文献   

17.
《Process Biochemistry》2014,49(1):38-46
Biomolecules labeled with superparamagnetic nanoparticles can be selectively removed from complex reaction mixtures using an external magnetic field. Amino-functionalized superparamagnetic iron oxide nanoparticles (amino-SPION) were co-aggregated with penicillin G acylase and then cross-linked, generating magnetic cross-linked enzymes aggregates (M-CLEAs) that were quickly and efficiently recovered from the reaction medium by applying an external magnetic field. M-CLEAs and cross-linked enzymes aggregates (CLEAs) prepared under the same reaction conditions were characterized and compared. The best recovered activities were obtained for M-CLEAs prepared using polyethylene glycol 600 as precipitant and the most stable M-CLEA were obtained using tert-butanol. Successive penicillin G hydrolysis reactions were carried out using the same M-CLEA in a 50 mL reactor (3 reaction cycles), after the reactions the derivate was magnetically recovered without loss of activity demonstrating a total magnetic recovery. Line-scan energy dispersive X-ray spectroscopy showed that the amino-SPIONs were homogeneously dispersed within the structure of the M-CLEA.  相似文献   

18.
The link between brain iron homeostasis and neurodegenerative disease has been the subject of extensive research. There is increasing evidence of iron accumulation during ageing, and altered iron levels in some specific brain regions in neurodegenerative disease patients have been reported.Using graphite furnace atomic absorption spectrometry after microwave-assisted acid digestion of the samples, iron levels were determined in 14 different areas of the human brain [frontal cortex, superior and middle temporal, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons (locus coeruleus), medulla and cerebellum (dentate nucleus)] of n = 42 adult individuals (71 ± 12 years old, range: 53–101 years old) with no known history or evidence of neurodegenerative, neurological or psychiatric disorders.It was found that the iron distribution in the adult human brain is quite heterogeneous. The highest levels were found in the putamen (mean ± SD, range: 855 ± 295 μg/g, 304–1628 μg/g) and globus pallidus (739 ± 390 μg/g, 225–1870 μg/g), and the lowest levels were observed in the pons (98 ± 43 μg/g, 11–253 μg/g) and medulla (56 ± 25 μg/g, 13–115 μg/g).Globally, iron levels proved to be age-related. The positive correlation between iron levels and age was most significant in the basal ganglia (caudate nucleus, putamen and globus pallidus).Compared with the age-matched control group, altered iron levels were observed in specific brain areas of one Parkinson's disease patient (the basal ganglia) and two Alzheimer's disease patients (the hippocampus).  相似文献   

19.
In this research, micro and nanoparticles of Spirulina platensis dead biomass were obtained, characterized and employed to removal FD&C red no. 40 and acid blue 9 synthetic dyes from aqueous solutions. The effects of particle size (micro and nano) and biosorbent dosage (from 50 to 750 mg) were studied. Pseudo-first order, pseudo-second order and Elovich models were used to evaluate the biosorption kinetics. The biosorption nature was verified using energy dispersive X-ray spectroscopy (EDS). The best results for both dyes were found using 250 mg of nanoparticles, in these conditions, the biosorption capacities were 295 mg g?1 and 1450 mg g?1, and the percentages of dye removal were 15.0 and 72.5% for the FD&C red no. 40 and acid blue 9, respectively. Pseudo-first order model was the more adequate to represent the biosorption of both dyes onto microparticles, and Elovich model was more appropriate to the biosorption onto nanoparticles. The EDS results suggested that the dyes biosorption onto microparticles occurred mainly by physical interactions, and for the nanoparticles, chemisorption was dominant.  相似文献   

20.
BackgroundMagnetic nanoparticles (MNPs) are at the leading edge of the field of biomedical applications and magnetic biosensing.MethodsMNPs were fabricated by electrophysical methods of the laser target evaporation (LTE) and spark discharge with electrodynamic acceleration of plasma jumpers (SD). Synthesis of polyacrylamide hydrogel was done in the presence of Fe2O3 MNPs in different concentrations obtained by LTE. [FeNi/Ti]3/Cu/[Ti/FeNi]3/Ti multilayers for giant magnetoimpedance (GMI) based sensitive elements were prepared by rf-sputtering for testing a biosensor prototype.ResultsIron oxide MNPs, ferrofluids, ferrofluids contacting with biological systems, synthetic ferrogels mimicking natural tissues – are the steps of the discussed in this work development of bionanomaterials. Thorough the structural and magnetic studies of a multilayered sensitive element, MNPs and ferrogels insure the complete characterization of biosensor prototype. The GMI responses were carefully evaluated in initial state and in the presence of ferrogel with known concentration of MNPs. SD MNPs had the smallest 5–8 nm size. This nanomaterial was characterized by large internal strains of the order of 25 × 10 3, which can play an important role for the interaction with different biosystems.ConclusionsIron oxide MNPs were fabricated by LTE and SD methods. SD MNPs had the smallest 5–8 nm size and large internal strains of the order of 25 × 10 3. Designed GMI biosensor prototype allowed precise evaluation of the stray field of the MNPs present in the ferrogel by evaluating the systematic changes of the GMI in a 20–400 MHz frequency range.General significanceThis work summarizes recent developments in the field of nanomaterials potentially applicable in magnetic biosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号