首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
细胞在低渗环境中出现渗透性膨胀 ,随后细胞内的溶质及水分外流 ,使已膨胀的细胞容积向正常容积转化 ,此过程称为调节性细胞容积减小 (RVD) ,它是哺乳动物细胞普遍存在的现象。容积调控氯通道 (VRAC)在这个过程中起重要作用 ,不仅如此 ,最近研究发现VRAC参与了细胞增殖、分化和凋亡过程。本文主要综述了VRAC的生物学特点和生理功能等方面的研究进展  相似文献   

2.
目的:探讨低氧脑水肿时血管内皮细胞生长因子(VEGF)、水通道蛋白(AQP1和AQP4)基因和蛋白表达变化,为阐明急性低氧对脑组织的损伤及低氧脑水肿的发病机制提供实验依据。方法:Wistar大鼠随机分为4个组:常氧对照组(Control)、低氧暴露4 000 m组(4 000 m)、低氧暴露6 000 m组(6 000 m)和低氧暴露8 000 m组(8 000 m),低氧组于低压舱中模拟相应海拔高度持续暴露8 h建立低氧脑水肿模型。用干-湿重法测定脑组织水含量,常规光镜观察脑组织形态学的改变;用RT-PCR法和免疫组化法检测低氧脑水肿时大鼠脑组织VEGF、AQP1和AQP4mRNA和蛋白表达的变化。结果:①干-湿重法测定表明,低氧(≥6 000 m)暴露后,大鼠脑组织水含量明显增加(P〈0.01)。②常规光镜检测结果表明,低氧暴露4 000 m时大鼠脑神经细胞、血管内皮细胞和星形胶质细胞足突轻度肿胀,组织中出现漏出液;低氧暴露6 000 m时脑血管内皮细胞和星形胶质细胞足突肿胀加重,血管与组织间隙扩大,组织中漏出液增多;低氧暴露8 000m时脑血管内皮细胞和星形胶质细胞足突重度肿胀,血管与组织间隙进一步扩大,组织中漏出液明显增多。③低氧脑水肿时,VEGF、AQP1、AQP4mRNA表达水平增高,AQP1在内皮细胞异常表达,内皮细胞VEGF和AQP1、星形胶质细胞足突AQP4蛋白质表达水平增高。结论:低氧脑水肿时,VEGF、AQP1和AQP4表达和分布的变化可能是引起血脑屏障损伤、导致低氧脑水肿的发病机制之一。  相似文献   

3.
目的:观察人小肠上皮细胞调节性细胞容积减小(RVD)的过程,探讨参与RVD过程的离子通道机制.方法:将培养的人小肠上皮细胞暴露于低渗溶液, 利用电子细胞体积测量系统测定细胞平均容积变化过程和离子通道的参与过程;采用RT-PCR方法检测人小肠上皮细胞上离子通道的表达.结果:人小肠上皮细胞具有良好的RVD功能; 其RVD过程可被氯通道阻断剂NPPB 和钾通道阻断剂四乙铵所阻断; 进一步的研究发现, 中等电导钙激活性钾通道(IK)的特异性阻断剂Clotrimazole (CLT) (1μmol/L)可以明显抑制细胞的RVD过程,而大电导钙激活性钾通道(BK)和小电导钙激活性钾通道(SK)的特异阻断剂iberiotoxin (100 nmol/L)和apamin (100 nmol/L)对RVD过程无任何抑制作用.RT-PCR的结果也显示, 人小肠上皮细胞只有IK表达, 而无SK和BK的表达.结论:人小肠上皮细胞具有RVD功能,RVD过程的完成有赖于氯通道和钾通道的平行激活, 而其中参与容积调节的钾通道是中等电导钙激活型钾通道IK.  相似文献   

4.
Wang JF  Wu N  Li J 《生理科学进展》2008,39(3):243-246
水通道蛋白4 (aquaporin 4,AQP4) 是中枢神经系统内重要的水通道蛋白之一,除了在海马、视上核和室旁核等部位的少数神经元上有分布外,主要表达在星形胶质细胞和室管膜上皮细胞中.近期的研究发现,AQP4除了参与脑脊液(cerebrospinal fluid,CSF)分泌、吸收等中枢神经系统内水代谢平衡的调节外,还有许多令人感兴趣的功能表现.AQP4能够影响星形胶质细胞的迁移和胶质疤痕的愈合;影响神经信号的传导;还能够调节星形胶质细胞对K 和谷氨酸的重摄取;改变神经元神经递质的释放;参与突触以及细胞间隙连接的形成等.上述发现表明AQP4不仅是影响中枢神经系统内水和电解质平衡的关键因素,而且是决定星形胶质细胞结构功能的重要分子基础之一.因此AQP4为众多脑疾病的治疗提供具有重要价值的潜在药物作用靶点,调控AQP4的表达与功能将成为治疗许多神经系统疾病的新策略.  相似文献   

5.
脑缺血是由于动脉阻塞或灌注不足导致大脑局部血流减少无法满足代谢需求产生的功能障碍。脑水肿是脑组织间或细胞内液体过度积聚的病理现象,是脑缺血后较为严重的并发症,将会导致颅内压升高,脑组织受压而神经功能受损,甚至死亡。水通道蛋白(aquaporin)是一类分布在细胞膜上的蛋白质家族,目前已发现有13种亚型,主要调节细胞内外水平衡且参与细胞迁移和信号传导等多个生理病理过程。水通道蛋白4(aquaporin-4,AQP4)主要分布在中枢神经系统中星形胶质细胞的终足上,在细胞毒性水肿和血管源性水肿的形成和消除中起双重作用,与脑缺血后脑水肿有密切关系。机体通过转录过程及翻译后修饰等多个水平调节AQP4的表达协调其功能。本文回顾了目前AQP4在脑缺血后作用的最新进展,力图为治疗脑卒中后脑水肿提供新的研究方向。  相似文献   

6.
用图像分析系统和通道阻断法研究了原代人胎儿鼻咽上皮细胞的调节性容积回缩(regulatory volume decrease,RVD)能力及其机制。结果发现,低渗刺激可诱发鼻咽上皮细胞产生RVD,在160-240 mOsmol/L范围内,RVD强弱与渗透压呈“S”形负相关(r=-0.99,P〈0.05),与细胞肿胀程度呈“S”形正相关(r=0.99,P〈0.05)。Cl-通道阻断剂tamoxifen(20μmol/L),ATP(10mmol/L)或NPPB(100μmol/L)对RVD阻抑率分别为100%(P〈0.01),76.3%(P〈0.01)和62.7%(P〈0.01)。本研究表明,鼻咽上皮细胞受到低渗刺激时可产生RVD,Cl-通道开放是其RVD的关键机制。  相似文献   

7.
脑外伤是青年人最主要的致死与致残疾病。脑水肿是脑外伤的严重并发症,其形成与脑内最主要的水通道蛋白4(aquaporin4, AQP4)关系密切。AQP4对水的转运与其在星形胶质细胞胞膜上的极性分布有关。肌营养不良-肌萎缩蛋白复合物(dystrophin-dystroglycan complex, DDC)可能与AQP4的锚定及极性分布有关。肌萎缩蛋白(dystroglycan, DG)是该复合物的核心成员,但其对AQP4锚定及极性表达的作用目前并不清楚。脑外伤后,AQP4的表达改变是否与DG有关,其二者表达变化的调控机制均不清楚。为了揭示以上科学问题,为临床治疗脑外伤后脑水肿提供理论依据,分别进行在体、离体及离体干扰实验。研究发现脑外伤后,AQP4、α-DG、β-DG的表达,于6 h增至峰值,后逐渐减弱,于24 h降至最低,48 h再次表达上调。在此过程中,其表达变化规律虽基本一致,但确实存在不一致的现象。排除其他因素干扰,在星形胶质细胞划伤后,DG与AQP4及p-ERK的表达改变完全一致;抑制及激活ERK信号通路后,分别导致DG与AQP4的表达下调及上调。以上结果证实,脑外伤后,DG参与AQP4在星形胶质细胞的锚定,但并非AQP4极性表达的专属锚定蛋白质;机械损伤后,早期ERK信号通路激活,并上调DG及AQP4的表达。  相似文献   

8.
水通道蛋白4与脑水肿研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
水通道蛋白4(AQP4)是膜水通道蛋白家族的一员,在脑组织中高表达,是控制水进出脑组织的通道。近年来发现,AQP4的功能和表达与脑水肿密切相关。同时脑水肿又是和脑疾病治疗密切相关的病理过程,对两者的研究或许可以为我们带来更多的临床治疗新思路。本文综述了AQP4的结构、表达、调控与功能以及AQP4与脑水肿关系的研究进展。  相似文献   

9.
鼻咽癌细胞CIC-3在细胞周期中的表达   总被引:5,自引:0,他引:5  
Wang LW  Chen LX  Jacob T 《生理学报》2004,56(2):230-236
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因CIC-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatory volume decrease,RVD)的关系。结果显示,CNE-2Z细胞表达CIC-3。CIC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性。G1期细胞的CIC-3表达水平较低而S期则较高,M期细胞的表达水平中等。在细胞周期中,CIC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比。上述观察结果提示,CIC-3可能参与细胞周期的调节,但CNE-2Z细胞中的CIC-3可能不是与RVD有关的氯通道。  相似文献   

10.
鼻咽癌细胞ClC-3在细胞周期中的表达   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatoryvolumedecrease,RVD)的关系.结果显示,CNE-2Z细胞表达ClC-3.ClC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性.G1期细胞的ClC-3表达水平较低而S期则较高,M期细胞的表达水平中等.在细胞周期中,ClC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比.上述观察结果提示,ClC-3可能参与细胞周期的调节,但CNE-2Z细胞中的ClC-3可能不是与RVD有关的氯通道.  相似文献   

11.
12.
13.
Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase-2, is a secreted lysophospholipase D (lysoPLD) that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA), a ligand for specific G protein-coupled receptors. ATX-LPA signaling is essential for development and has been implicated in a great diversity of (patho)physiological processes, ranging from lymphocyte homing to tumor progression. Structural and functional studies have revealed what makes ATX a unique lysoPLD, and how secreted ATX binds to its target cells. The ATX catalytic domain shows a characteristic bimetallic active site followed by a shallow binding groove that can accommodate nucleotides as well as the glycerol moiety of lysophospholipids, and by a deep lipid-binding pocket. In addition, the catalytic domain has an open tunnel of unknown function adjacent to the active site. Here, we discuss our current understanding of ATX structure-function relationships and signaling mechanisms, and how ATX isoforms use distinct mechanisms to target LPA production to the plasma membrane, notably binding to integrins and heparan sulfate proteoglycans. We also briefly discuss the development of drug-like inhibitors of ATX.  相似文献   

14.
By definition, a vitamin is a substance that must be obtained regularly from the diet. Vitamin A must be acquired from the diet, but unlike most vitamins, it can also be stored within the body in relatively high levels. For humans living in developed nations or animals living in present-day vivariums, stored vitamin A concentrations can become relatively high, reaching levels that can protect against the adverse effects of insufficient vitamin A dietary intake for six months, or even much longer. The ability to accumulate vitamin A stores lessens the need for routinely consuming vitamin A in the diet, and this provides a selective advantage to the organism. The molecular processes that underlie this selective advantage include efficient mechanisms to acquire vitamin A from the diet, efficient and overlapping mechanisms for the transport of vitamin A in the circulation, a specific mechanism allowing for vitamin A storage, and a mechanism for mobilizing vitamin A from these stores in response to tissue needs. These processes are considered in this review.  相似文献   

15.
16.
17.
The putative pea PINOID homolog, PsPK2, is expressed in all growing plant parts and is positively regulated by auxin, gibberellin, and cytokinin. Here, we studied hormonal regulation of PsPK2::GUS expression compared with DR5::GUS and PID::GUS in Arabidopsis. PsPK2::GUS, DR5::GUS, and PID::GUS expression in Arabidopsis shoots is mainly localized in the stipules, hydathodes, veins, developing leaves, and cotyledons. Unlike DR5::GUS, PsPK2::GUS, and PID::GUS are weakly expressed in root tips. Both DR5::GUS and PsPK2::GUS are induced by different auxins and are more sensitive to methyl indole acetic acid, 4-chloro-indole acetic acid, and α-naphthalene acetic acid than others. GA(3) has no significant effect on GUS activity in DR5::GUS-transformed seedlings compared to the control, but induction by auxin and gibberellin in combination is synergistic. Cytokinin increases auxin transport in Arabidopsis seedlings. Auxin, gibberellin, and cytokinin all increase GUS activity in shoots of PsPK2::GUS transformed plants compared to the control. However, only auxin and gibberellin increase GUS activity in PID::GUS shoots. In conclusion, auxin, gibberellin, and cytokinin positively regulate PsPK2 expression in shoots, but not in roots. Auxin and gibberellin also upregulate AtPIN1 and LEAFY expression, which is similar to PsPIN1 and Uni in pea. With minor exceptions, the orthologous genes from both species are regulated similarly.  相似文献   

18.
19.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Structural Biology.  相似文献   

20.
The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号