首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid state (substrate) fermentation (SSF) has been used successfully for the production of enzymes and secondary metabolites. These products are associated with the stationary phase of microbial growth and are produced on an industrial scale for use in agriculture and the treatment of disease. Many of these secondary metabolites are still produced by submerged liquid fermentations (SmF) even though production by this method has been shown to be less efficient than SSF. As large-scale production increases further, so do the costs and energy demands. SSF has been shown to produce a more stable product, requiring less energy, in smaller fermenters, with easier downstream processing measures. In this article we review an important area of biotechnology, since the recent evidence indicates that bacteria and fungi, growing under SSF conditions, are more than capable of supplying the growing global demand for secondary metabolites.  相似文献   

2.
In this review the state of the art of lignocellulose bioconversion by solid substrate fermentation (SSF) is presented. The most important lignocellulolytic fungi and their properties are described, and their application in novel solid state bioreactors with on-line process control is discussed. The most important bioconversion products, biofuels, enzymes, animal feeds, biofertilizers, biopesticides, biopromoters, secondary metabolites, and the economy of their production by SSF is discussed. The use of SSF in the pulp and paper industry and in integrated crop management is illustrated.  相似文献   

3.
Solid-state fermentation systems-an overview   总被引:7,自引:0,他引:7  
Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   

4.
Solid-state fermentation (SSF) using inert supports impregnated with chemically defined liquid media has several potential applications in both scientific studies and in the industrial production of high-value products, such as metabolites, biological control agents and enzymes. As a result of its more defined system, SSF on inert supports offers numerous advantages, such as improved process control and monitoring, and enhanced process consistency, compared with cultivation on natural solid substrates.  相似文献   

5.
New developments in solid state fermentation: I-bioprocesses and products   总被引:7,自引:0,他引:7  
The last decade has witnessed an unprecedented increase in interest in solid state fermentation (SSF) for the development of bioprocesses, such as bioremediation and biodegradation of hazardous compounds, biological detoxification of agro-industrial residues, biotransformation of crops and crop-residues for nutritional enrichment, biopulping, and production of value-added products, such as biologically active secondary metabolites, including antibiotics, alkaloids, plant growth factors, etc. enzymes, organic acids, biopesticides, including mycopesticides and bioherbicides, biosurfactants, biofuel, aroma compounds, etc. SSF systems, which during the previous two decades were termed as a ‘low-technology’ systems, appear to be a promising one for the production of value-added ‘low volume-high cost’ products such as biopharmaceuticals. SSF processes offer potential advantages in bioremediation and biological detoxification of hazardous and toxic compounds. With the advent of biotechnological innovations, mainly in the area of enzyme and fermentation technology, many new avenues have opened for the application of SSF. This review discusses more recent developments in the area of SSF leading to the developments of bioprocesses and products.  相似文献   

6.
Abstract

Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   

7.
Despite the increasing number of publications dealing with solid-state (substrate) fermentation (SSF) it is very difficult to draw general conclusion from the data presented. This is due to the lack of proper standardisation that would allow objective comparison with other processes. Research work has so far focused on the general applicability of SSF for the production of enzymes, metabolites and spores, in that many different solid substrates (agricultural waste) have been combined with many different fungi and the productivity of each fermentation reported. On a gram bench-scale SSF appears to be superior to submerged fermentation technology (SmF) in several aspects. However, SSF up-scaling, necessary for use on an industrial scale, raises severe engineering problems due to the build-up of temperature, pH, O2, substrate and moisture gradients. Hence, most published reviews also focus on progress towards industrial engineering. The role of the physiological and genetic properties of the microorganisms used during growth on solid substrates compared with aqueous solutions has so far been all but neglected, despite the fact that it may be the microbiology that makes SSF advantageous against the SmF biotechnology. This review will focus on research work allowing comparison of the specific biological particulars of enzyme, metabolite and/or spore production in SSF and in SmF. In these respects, SSF appears to possess several biotechnological advantages, though at present on a laboratory scale only, such as higher fermentation productivity, higher end-concentration of products, higher product stability, lower catabolic repression, cultivation of microorganisms specialized for water-insoluble substrates or mixed cultivation of various fungi, and last but not least, lower demand on sterility due to the low water activity used in SSF.  相似文献   

8.
9.
Marine microbes are potential source for novel metabolites. They are efficient in producing these metabolites utilizing agrowastes. Protease is one of the enzymes which find wide industrial applications. In the present study, protease producing bacteria was isolated from marine sediments and the organism was identified as Bacillus halodurans. The organism was subjected to protease production under solid state fermentation (SSF) using different agrowastes as substrates. Among the substrates used, wheat bran yielded maximum quantity of protease. The fermentation process was carried out under different cultural conditions to optimize the parameters influencing the enzyme production. The results of the stain removal studies by the enzyme revealed the increased efficiency of the microbial enzyme than the commercial detergent.  相似文献   

10.
Summary Penicillin was produced by a non-sterile solid state fermentation (SSF) on bagasse impregnated with culture medium. The use of concentrated media greatly enhanced the antibiotic production in this system. It was observed that adequate initial moisture content (70%) of the impregnated solid medium results in higher production. A comparison between solid and liquid fermentation showed superior yield and productivity.  相似文献   

11.
A comparative study of Penicillium simplicissimum morphology and lipase production was performed using solid-state (SSF) and submerged (SmF) fermentation. SSF was carried out on babassu cake as culture medium and SmF on a semi-synthetic medium and a medium based on suspended babassu cake grains. Yield of product on biomass, specific activity and conidia production were 3.3-, 1.3- and 2-fold higher in SSF. In SmF, the type of fungus growth differed according to the medium. Using the semi-synthetic medium, the fungus formed densely interwoven mycelial masses without conidia production, whereas using the babassu-based medium the fungus formed free mycelia and adhered to the surfaces of the grains, producing conidia. The results show that babassu cake induces conidiation in SmF. In SSF, the fungus not only grew on the surface of the grains, producing conidia abundantly, but also effectively colonized and penetrated the babassu particles. The high conidia production and lipase productivity in SSF may be related to the low availability of nutrients or to other stimuli associated with this type of fermentation. Thus, the high production of the thermostable P. simplicissimum lipase, using a non-supplemented, low-cost agro-industrial residue as the culture medium, demonstrates the biotechnological potential of SSF for the production of industrial enzymes.  相似文献   

12.
Aim: To study effects of cyclic adenosine monophosphate (cAMP) on development and secondary metabolites of Monascus ruber M‐7. Methods and Results: Plate culture, liquid‐state fermentation (LSF) and solid‐state fermentation (SSF) were used to evaluate effects of cAMP on colonial growth, spore formation and polyketide production of Strain M‐7. The results revealed that the variation trends of colonial sizes, numbers of sexual spores and red pigment contents of M‐7 were in a dose‐dependent manner. And generally they increased and decreased with cAMP concentrations in the ranges of low cAMP concentrations and high cAMP concentrations, respectively. But the variation trends of numbers of asexual spores and citrinin production in both LSF and SSF were opposite to those of colonial sizes, sexual sporulation and red pigment. Conclusions: The regulation of cAMP on development and secondary metabolites in Strain M‐7 was in a dose‐dependent pattern. And red pigment might convert to citrinin under changing cAMP concentrations. Significance and Impact of the Study: The effects of cAMP on Strain M‐7 in SSF give a new clue to enhance beneficial polyketides and reduce citrinin produced by M. ruber.  相似文献   

13.
A novel two-stage bioreactor has been designed for a combined submerged (SF) and solid substrate fermentation (SSF) of wheat straw. The straw was pretreated with steam, and cellulases from the culture fluid of Trichoderma reesei were adsorbed on it for increased bioconvertibility. SSF was conducted in the top part of the bioreactor by inoculating the straw with a 36-h mycelial culture of T. reesei, or Coriolus versicolor. In the bottom part of the fermenter, Endomycopsis fibuliger was grown in SF. The SF liquor was recirculated through the SSF stage at 24 h intervals to remove glucose and other metabolites that may inhibit growth, and to maintain optimum moisture level and temperature. The removed glucose and other metabolites provided nutrients for the yeast in the SF stage. The combined fermentation resulted in overall higher biomass yield, increased bioconversion, increased cellulase production, and increased digestibility compared with single SSF or SF.  相似文献   

14.
15.
16.
17.
18.
19.
Aims: To determine in liquid (LF) and solid‐state fermentation (SSF) the effect of medium concentration on growth and Taxol produced by Nigrospora sp., a fungus isolated from the Mexican yew. Methods and Results: Nigrospora sp. was grown at different concentrations of the base culture medium M1D, i.e. two (2×), four (4×), six (6×) and eight times (8×) the base concentration. The titres of Taxol determined by competitive inhibition enzyme immunoassay increased with increasing medium concentration in LF and SSF but were higher in SSF in every medium concentration. The Taxol produced in SSF and LF with 8× medium was 221 and 142 ng l?1. The SSF gave also higher biomass, growth and sugar utilization than LF in every medium. The growth and sugar consumption were modelled by the logistic and the Pirt models, respectively. However, the Luedeking–Piret model was unsuitable for Taxol. Conclusions: The SSF surpassed LF in terms of Taxol, growth and sugar utilization; thus, it has significant advantages over LF. Significance and Impact of the Study: This is the first report on Taxol production by SSF and the first contribution to evaluate the influence of the medium on Taxol production in LF and SSF.  相似文献   

20.
Bioactive substances (BAS) of plant origin are known to play a very important role in modern medicine. Their use, however, is often limited by availability of plant resources and may jeopardize rare species of medicinal plants. Plant cell cultures can serve as a renewable source of valuable secondary metabolites. To the date, however, only few examples of their commercial use are known. The main reasons for such a situation are the insufficient production of secondary metabolites and high cultivation costs. It is possible to increase the performance of plant cell cultures by one or two orders of magnitude using traditional methods, such as selection of highly productive strains, optimization of the medium composition, elicitation, and addition of precursors of secondary metabolite biosynthesis. The progress in molecular biology methods brought about the advent of new means for increasing of the productivity of cell cultures based on the methods of metabolic engineering. Thus, overexpression of genes encoding the enzymes involved in the synthesis of the target product or, by contrast, repression of these genes significantly influences the cell biosynthetic capacity in vitro. Nevertheless, the attempts of the production of many secondary metabolites in plant cell culture were unsuccessful so far, probably due to the peculiarities of the cell culture as an artificial population of plant somatic cells. The use of plant organ culture or transformed roots (hairy root) could turn to be a considerably more efficient solution for this problem. The production of plant-derived secondary metabolites in yeast or bacteria transformed with plant genes is being studied currently. Although the attempts to use metabolic engineering methods were not particularly successful so far, new insights in biochemistry and physiology of secondary metabolism, particularly in regulation and compartmentation of secondary metabolite synthesis as well as mechanisms of their transport and storage make these approaches promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号