首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell suspensions was investigated using batch activity tests and by operating a completely stirred tank reactor (CSTR). The maximum specific hydrogenotrophic sulfite/sulfate reduction rate increased with 10% and 300%, respectively, by crushing granular inoculum sludge and by cultivation of this sludge as cell suspension in a CSTR. Operation of a sulfite fed CSTR (hydraulic retention time 4 days; pH 7.0; sulfite loading rate 0.5–1.5 g SO 3 2- l-1 d-1) with hydrogen as electron donor showed that high (up to 1.6 g l-1) H2S concentrations can be obtained within 10 days of operation. H2S inhibition, however, limited the sulfite reducing capacity of the CSTR. Methane production by the cell suspension disappeared within 20 days reactor operation. The outcompetition of methanogens in excess of H2 can be attributed to CO2 limitation and/or to sulfite or sulfide toxicity. The use of cell suspensions opens perspectives for monolith or packed bed reactor configurations, which have a much lower pressure drop compared to air lift reactors, to supply H2 to sulfite/sulfate reducing bioreactors.  相似文献   

2.
AIMS: The aim of this investigation was to develop an empirical model for the autotrophic biodegradation of thiocyanate using an activated sludge reactor. METHODS AND RESULTS: The methods used for this purpose included the use of a laboratory scale activated sludge reactor unit using thiocyante feed concentrations from 200 to 550 mg x l(-1). Reactor effluent concentrations of <1 mg x l(-1) thiocyanate were consistently achieved for the entire duration of the investigation at a hydraulic retention time of 8 h, solids (biomass) retention of 18 h and biomass (dry weight) concentrations ranging from 2 to 4 g x l(-1). A biomass specific degradation rate factor was used to relate thiocyanate degradation in the reactor to the prevailing biomass and thiocyanate feed concentrations. A maximum biomass specific degradation rate of 16 mg(-1) x g(-1) x h(-1) (mg thiocyanate consumed per gram biomass per hour) was achieved at a thiocyanate feed concentration of 550 mg x l(-1). The overall yield coefficient was found to be 0.086 (biomass dry weight produced per mass of thiocyanate consumed). CONCLUSION: Using the results generated by this investigation, an empirical model was developed, based on thiocyanate feed concentration and reactor biomass concentration, to calculate the required absolute hydraulic retention time at which a single-stage continuously stirred tank activated sludge reactor could be operated in order to achieve an effluent concentration of <1 mg x l(-1). The use of an empirical model rather than a mechanistic-based kinetic model was proposed due to the low prevailing thiocyanate concentrations in the reactor. SIGNIFICANCE AND IMPACT OF THE STUDY: These results represent the first empirical model, based on a comprehensive data set, that could be used for the design of thiocyanate-degrading activated sludge systems.  相似文献   

3.
Seawater toilet flushing, seawater intrusion in the sewerage, and discharge of sulfate-rich industrial effluents elevates sulfate content in wastewater. The application of sulfate-reducing bacteria (SRB) in wastewater treatment is very beneficial; as for example, it improves the pathogen removal and reduces the volume of waste sludge, energy requirement and costs. This paper evaluates the potential to apply biological sulfate reduction using acetate and propionate to saline sewage treatment in moderate climates. Long-term biological sulfate reduction experiments at 10 and 20 °C were conducted in a sequencing batch reactor with synthetic saline domestic wastewater. Subsequently, acetate and propionate (soluble organic carbon) conversion rate were determined in both reactors, in the presence of either or both fatty acids. Both acetate and propionate consumption rates by SRB were 1.9 times lower at 10 °C than at 20 °C. At 10 °C, propionate was incompletely oxidized to acetate. At 10 °C, complete removal of soluble organic carbon requires a significantly increased hydraulic retention time as compared to 20 °C. The results of the study showed that biological sulfate reduction can be a feasible and promising process for saline wastewater treatment in moderate climate.  相似文献   

4.
CANON and Anammox in a gas-lift reactor   总被引:57,自引:0,他引:57  
Anoxic ammonium oxidation (Anammox) and Completely Autotrophic Nitrogen removal Over Nitrite (CANON) are new and promising microbial processes to remove ammonia from wastewaters characterized by a low content of organic materials. These two processes were investigated on their feasibility and performance in a gas-lift reactor. The Anammox as well as the CANON process could be maintained easily in a gas-lift reactor, and very high N-conversion rates were achieved. An N-removal rate of 8.9 kg N (m(3) reactor)(-1) day(-1) was achieved for the Anammox process in a gas-lift reactor. N-removal rates of up to 1.5 kg N (m(3) reactor)(-1) day(-1) were achieved when the CANON process was operated. This removal rate was 20 times higher compared to the removal rates achieved in the laboratory previously. Fluorescence in situ hybridization showed that the biomass consisted of bacteria reacting to NEU, a 16S rRNA targeted probe specific for halotolerant and halophilic Nitrosomonads, and of bacteria reacting to Amx820, specific for planctomycetes capable of Anammox.  相似文献   

5.
Sulfate reduction outcompeted methanogenesis at 65 degrees C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 3.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors operated at 14 and 3.5 h, respectively, sulfide production accounted for 80% of the methanol-COD consumed by the sludge. The specific methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down to 3.5 h for a period of 4 months gradually decreased from 0. 83 gCOD. gVSS(-1). day(-1) at the start to a value of less than 0.05 gCOD. gVSS(-1). day(-1), showing that the relative number of methanogens decreased and eventually became very low. By contrast, the increase of the specific sulfidogenic activity of sludge from 0. 22 gCOD. gVSS(-1). day(-1) to a final value of 1.05 gCOD. gVSS(-1). day(-1) showed that sulfate reducing bacteria were enriched. Methanol degradation by a methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanol was not important. H(2)/CO(2) and formate, but not acetate, were degraded to methane in the presence of vancomycin. These results indicated that methanol degradation to methane occurs via the intermediates H(2)/CO(2) and formate. The high and low specific methanogenic activity of sludge on H(2)/CO(2) and formate, respectively, indicated that the former substrate probably acts as the main electron donor for the methanogens during methanol degradation. As sulfate reduction in the sludge was also strongly supported by hydrogen, competition between sulfate reducing bacteria and methanogens in the sludge seemed to be mainly for this substrate. Sulfate elimination rates of up to 15 gSO(4)(2-)/L per day were achieved in the reactors. Biomass retention limited the sulfate elimination rate.  相似文献   

6.
The present study was conducted to investigate the chromium(VI), COD and sulphate removal efficiency from aqueous solution and treatment of real effluent (CETP) in a small scale bioreactor using sulphate reducing bacteria consortium. Effect of different hydraulic retention times (HRTs), initial metal concentrations, various carbon sources and temperatures were studied on removal of chromium(VI), COD and sulphate. Maximum chromium(VI) and sulphate removal was found to be 96.0% and 82.0%, respectively, at initial concentration of 50 mg l−1 using lactate as carbon source. However, highest COD removal was 36.2% in medium containing fructose as the carbon source and electron donor. NADH dependent chromate reductase activity was not observed which indicated the anaerobic consortium. Initially consortium medium with a strong negative oxidation reduction potential indicated the reducing activity. The FTIR spectrum of the sulphate reducing bacteria consortium clearly shows the existence of the sulphate ions and signifies that sulfate reducing bacteria have used sulfate during the growth phase.  相似文献   

7.
This work presents a multispecies biofilm model that describes the co‐existence of nitrate‐ and sulfate‐reducing bacteria in the H2‐based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate‐reducing bacteria that use H2 as their electron donor. To evaluate the model, the simulated effluent H2, UAP (substrate‐utilization‐associated products), and BAP (biomass‐associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real‐time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate‐reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction. Biotechnol. Bioeng. 2013; 110: 763–772. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Sulfate reduction is an appropriate approach for the treatment of effluents with sulfate and dissolved metals. In sulfate‐reducing reactors, acetate may largely contribute to the residual organic matter, because not all sulfate reducers are able to couple the oxidation of acetate to the reduction of sulfate, limiting the treatment efficiency. In this study, we investigated the diversity of a bacterial community in the biofilm of a laboratory scale down‐flow fluidized bed reactor, which was developed under sulfidogenic conditions at an influent pH between 4 and 6. The sequence analysis of the microbial community showed that the 16S rRNA gene sequence of almost 50% of the clones had a high similarity with Anaerolineaceae. At second place, 33% of the 16S rRNA phylotypes were affiliated with the sulfate‐reducing bacteria Desulfobacca acetoxidans and Desulfatirhabdium butyrativorans, suggesting that acetotrophic sulfate reduction was occurring in the system. The remaining bacterial phylotypes were related to fermenting bacteria found at the advanced stage of reactor operation. The results indicate that the acetotrophic sulfate‐reducing bacteria were able to remain within the biofilm, which is a significant result because few natural consortia harbor complete oxidizing sulfate‐reducers, improving the acetate removal via sulfate reduction in the reactor.  相似文献   

9.
A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700?mg COD?l?1. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD?l?1 h?1 at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02?mg ATP g VS?1 versus 0.85?mg ATP g VS?1) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6?mg ATP g VS?1 versus 1.1?mg ATP g VS?1), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system.  相似文献   

10.
Summary Thermophilic biological denitrification was studied in a laboratory-upflow sludge blanket reactor fed with ethanol as carbon and energy source. High denitrification efficiency (>98%) was obtained at an ethanol: nitrate ratio >2 and at a hydraulic retention time (HRT) of 5 hours. The performance of the system with respect to nitrate removal was very satisfactory (>95%), even at high nitrate (235 mg NO3-N/L) and hydraulic (3 hours HRT) loading rates applied.A stable sludge was formed by spherical granules 1 to 3 mm in diameter with a content of 25,8 g VS/L and were almost exclusively composed of bacteria belonging to the genus Bacillus.  相似文献   

11.
Acidic industrial process and wastewaters often contain high sulfate and metal concentrations and their direct biological treatment is thus far not possible as biological processes at pH < 5 have been neglected. Sulfate‐reducing bacteria convert sulfate to sulfide that can subsequently be used to recover metals as metal‐sulfides precipitate. This study reports on high‐rate sulfate reduction with a mixed microbial community at pH 4.0 and 4.5 with hydrogen and/or formate as electron donors. The maximum sulfate reducing activity at pH 4.0 was sustained for over 40 days with a specific activity 500‐fold greater than previously reported values: 151 mmol sulfate reduced/L reactor liquid per day with a maximum specific activity of 84 mmol sulfate per gram of volatile suspended solids per day. The biomass yield gradually decreased from 38 to 0.4 g volatile suspended solids per kilogram of sulfate when decreasing the reactor pH from pH 6 to 4. The microorganisms had a high maintenance requirement probably due maintaining pH homeostasis and the toxicity of sulfide at low pH. The microbial community diversity in the pH 4.0 membrane bioreactor decreased over time, while the diversity of the sulfate reducing community increased. Thus, a specialized microbial community containing a lower proportion of microorganisms capable of activity at pH 4 developed in the reactor compared with those present at the start of the experiment. The 16S rRNA genes identified from the pH 4.0 grown mixed culture were most similar to those of Desulfovibrio species and Desulfosporosinus sp. M1. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Summary In the combined ion exchange/biological denitrification process for nitrate removal from ground water anion exchange resins are regenerated in a closed circuit by way of an upflow sludge blanket denitrification reactor. The regenerant (a concentrated sodium bicarbonate solution) is recirculated through the ion exchanger in the r generation mode and the denitrification reactor. In the closed system sulfate accumulates to very high concentrations. For that reason it was examined under what process conditions sulfate reduction occurs in an upflow sludge blanket denitrification reactor, when the influent contains high sulfate concentrations (5.45 g SO 4 2- /l) and high sodium bicarbonate concentrations (19.8 g NaHCO3/l) in addition to nitrate and methanol. It appeared that at a hydraulic residence time of 5 h sulfide production started, when the nitrate loading rate was 20% of the denitrification reactor capacity and methanol was added in excess. The excess of methanol was converted into acetate after nitrate was depleted. Conversion of methanol into acetate was a function of the hydraulic residence time. At hydraulic residence times above 8 h this conversion was complete. Also in batch experiments it was observed that excess of methanol was converted into acetate, and that sulfate reduction started when nitrate was depleted. From all experiments it is clear that, provided that methanol is added in good relation to the quantity of nitrate that has to be denitrified, acetate will not be produced and sulfate reduction will not occur in the denitrification reactor, even in the presence of very high sulfate concentrations.  相似文献   

13.
The feasibility of lead removal through biological sulfate reduction process with ethanol as electron donor was investigated. Sulfide-rich effluent from biological process was used to remove lead as lead sulfide precipitate. The experiments were divided into two stages; Stage I startup and operation of sulfidogenic process in a UASB reactor and Stage II lead sulfide precipitation. In Stage I, the COD:S ratio was gradually reduced from 15:1 to 2:1. At the COD:S ratio of 2:1, sulfidogenic condition was achieved as identified by 80-85% of electron flow by sulfate reducing bacteria (SRB). COD and sulfate removal efficiency were approximately 78% and 50%, respectively. In Stage II, the effluent from UASB reactor containing sulfide in the range of 30-50 mg/L and lead-containing solution of 45-50 mg/L were fed continuously into the precipitation chamber in which the optimum pH for lead sulfide precipitation of 7.5-8.5 was maintained. It was found that lead removal of 85-95% was attained.  相似文献   

14.
High-cell-density cultivation of microorganisms   总被引:29,自引:0,他引:29  
High-cell-density cultivation (HCDC) is required to improve microbial biomass and product formation substantially. An overview of HCDC is given for microorganisms including bacteria, archae and eukarya (yeasts). Problems encountered by HCDC and their possible solutions are discussed. Improvements of strains, different types of bioreactors and cultivation strategies for successful HCDC are described. Stirred-tank reactors with and without cell retention, a dialysis-membrane reactor, a gas-lift reactor and a membrane cyclone reactor used for HCDC are outlined. Recently modified traditional feeding strategies and new ones are included, in particular those for unlimited growth to very dense cultures. Emphasis is placed on robust fermentation control because of the growing industrial interest in this field. Therefore, developments in the application of multivariate statistical control, artificial neural networks, fuzzy control and knowledge-based supervision (expert systems) are summarized. Recent advances using Escherichia coli– the pioneer organism for HCDC – are outlined. Received: 20 October 1998 / Received revision: 18 December 1998 / Accepted: 21 December 1998  相似文献   

15.
The model of anaerobic digestion described earlier by the authors was used for analysis of the different phases of the process. It was shown that at the glucose conversion a coexistence of hydrogen-producing acidogenic bacteria and hydrogen-utilizing non-methanogenic bacteria causes a hydrogen partial pressure decrease at an increase of solids retention time (i), the intensity of the negative feed-back effect in sulfate-reduction through hydrogen sulfide formation is regulated by the pH level during an oscillation dynamics in acetate/sulfate system (ii), under the toxicity influence the processes of methanogenesis and acetogenesis together with hydrolysis may be rate-limiting steps in the anaerobic system with particulate substrate degradation (iii).Abbreviations B1, B2 two groups of acidogens - DS total dissolved sulfide concentration - HRT hydraulic retention time - MPB methane-producing bacteria - SRB sulfate-reducing bacteria - SRT solids retention time - VFA's volatile fatty acids  相似文献   

16.
The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB.  相似文献   

17.
Thermophilic sulfate and sulfite reduction was studied in lab-scale Expanded Granular Sludge Bed (EGSB) reactors operated at 65°C and pH 7.5 with methanol as the sole carbon and energy source for the sulfate- and sulfite-reducing bacteria. At a hydraulic retention time (HRT) of 10 h, maximum sulfite and sulfate elimination rates of 5.5 gSO3 2- L-1 day-1 (100 % elimination) and 5.7 gSO4 2- -1 day-1 (55% elimination) were achieved, resulting in an effluent sulfide concentration of approximately 1800 mgS L-1. Sulfate elimination was limited by the sulfide concentration, as stripping of H2S from the reactor with nitrogen gas was found to increase the sulfate elimination rate to 9.9 gSO4 2- L-1 day-1 (100 % elimination). At a HRT of 3 h, maximum achievable sulfite and sulfate elimination rates were even 18 gSO3 2- L-1 day-1 (100% elimination) and 11 gSO4 2- L-1 day-1(50% elimination). At a HRT of 3 h, the elimination rate was limited by the biomass retention of the system. 5.5 ± 1.8% of the consumed methanol was converted to acetate, which was not further degraded by sulfate reducing bacteria present in the sludge. The acetotrophic activity of the sludge could not be stimulated by cultivating the sludge for 30 days under methanol-limiting conditions. Omitting cobalt as trace element from the influent resulted in a lower acetate production rate, but it also led to a lower sulfate reduction rate. Sulfate degradation in the reactor could be described by zeroth order kinetics down to a threshold concentration of 0.05 g L-1, while methanol degradation followed Michaelis-Menten kinetics with a Km of 0.037 gCOD L-1.  相似文献   

18.
内循环颗粒污泥床硝化反应器流动模型研究   总被引:3,自引:0,他引:3  
卢刚  郑平 《生物工程学报》2003,19(6):754-757
采用脉冲刺激响应技术,对稳态内循环颗粒污泥床硝化反应器进行了示踪试验。根据试验结果,分别运用轴向扩散模型和多釜全混流反应器串联模型,对反应器沉淀区和循环区的流态进行了分析和判断。结果表明,反应器沉淀区的分散数D/uL为0.00148,该区域的流态接近于平推流反应器(PFR);反应器循环区的串联级数为1.021,该区域的流态接近于全混流反应器(CSTR)。稳态时,反应器的理论水力停留时间为360min,实际水力停留时间为341.2min,反应器中死区所占的体积百分比为5.22%,其中生物体死区为0.75%,水力死区为4.47%,表明反应器结构性能良好。根据试验和分析结果,建立了内循环颗粒污泥床硝化反应器的流动模型,即全混流和平推流的串联组合模型。由流动模型所得的理论停留时间分布曲线与由试验所得的实际停留时间分布曲线吻合良好,两者的平均相对误差为8.56%,表明所建模型具有较高的准确性。  相似文献   

19.
In this study it is reported the operation of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor under sulfate-reducing condition which was also exposed to different amounts of ethanol and toluene. The system was inoculated with sludge taken from up-flow anaerobic sludge blanket (UASB) reactors treating refuses from a poultry slaughterhouse. The HAIB reactor comprised of an immobilized biomass on polyurethane foam and ferrous and sodium sulfate solutions were used (91 and 550 mg/L, respectively), to promote a sulfate-reducing environment. Toluene was added at an initial concentration of 2.0 mg/L followed by an increased range of different amendments (5, 7, and 9 mg/L). Ethanol was added at an initial concentration of 170 mg/L followed by an increased range of 960 mg/L. The reactor was operated at 30(+/-2) degrees C with hydraulic detention time of 12 h. Organic matter removal efficiency was close to 90% with a maximum toluene degradation rate of 0.06 mg(toluene)/mg(vss)/d. Sulfate reduction was close to 99.9% for all-nutritional amendments. Biofilm microscopic characterization revealed a diversity of microbial morphologies and DGGE-profiling showed a variation of bacterial and sulfate reducing bacteria (SRB) populations, which were significantly associated with toluene amendments. Diversity of archaea remained unaltered during the different phases of this experiment. Thus, this study demonstrates that compact units of HAIB reactors, under sulfate reducing conditions, are a potential alternative for in situ aromatics bioremediation.  相似文献   

20.
A novel self-regulating bioreactor concept for sulfate reduction is proposed aiming for high biomass concentrations and treatment capacities. The system consists of a cell suspension of sulfate reducing bacteria in a continuous stirred tank reactor (30 degrees C) fed with a mixture of both electron donor and electron acceptor (formic acid and sulfuric acid, respectively), nutrients and phosphate buffer via a pH controller. The pH rise due to sulfate reduction is balanced with dosage of the sulfate reducing substrates as acids. The reactor concept was shown to be capable of full sulfate reduction without competition for the electron donor by methanogens and acetogens. Activity assays revealed that hardly any methanogenic activity on formate was left in the suspension by the end of the continuous run (130 days). In addition, the sulfidogenic activity with formate and H2/CO2 had increased, respectively, 3.9 and 11.6 times at the end of the experimental run. The evolution of the particle size distribution of the cell suspension over time indicated that newly grown cells have the tendency to attach together in flocs or to the existing agglomerates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号