首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiu CH  Tang P  Chu C  Hu S  Bao Q  Yu J  Chou YY  Wang HS  Lee YS 《Nucleic acids research》2005,33(5):1690-1698
Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis.  相似文献   

2.

Background

Salmonella serovars Enteritidis and Gallinarum are closely related, but their host ranges are very different: the former is host-promiscuous and the latter can infect poultry only. Comparison of their genomic sequences reveals that Gallinarum has undergone much more extensive degradation than Enteritidis. This phenomenon has also been observed in other host restricted Salmonella serovars, such as Typhi and Paratyphi A. The serovar Gallinarum can be further split into two biovars: Gallinarum and Pullorum, which take poultry as their common host but cause distinct diseases, with the former eliciting typhoid and the latter being a dysentery agent. Genomic comparison of the two pathogens, with a focus on pseudogenes, would provide insights into the evolutionary processes that might have facilitated the formation of host-restricted Salmonella pathogens.

Methodologies/Principal Findings

We sequenced the complete genome of Pullorum strains and made comparison with Gallinarum and other Salmonella lineages. The gene contents of Gallinarum and Pullorum were highly similar, but their pseudogene compositions differed considerably. About one fourth of pseudogenes had the same inactivation mutations in Gallinarum and Pullorum but these genes remained intact in Enteritidis, suggesting that the ancestral Gallinarum may have already been restricted to poultry. On the other hand, the remaining pseudogenes were either in the same genes but with different inactivation sites or unique to Gallinarum or Pullorum, reflecting unnecessary functions in infecting poultry.

Conclusions

Our results support the hypothesis that the divergence between Gallinarum and Pullorum was initiated and facilitated by host restriction. Formation of pseudogenes instead of gene deletion is the major form of genomic degradation. Given the short divergence history of Gallinarum and Pullorum, the effect of host restriction on genomic degradation is huge and rapid, and such effect seems to be continuing to work. The pseudogenes may reflect the unnecessary functions for Salmonella within the poultry host.  相似文献   

3.
Salmonella Paratyphi A (S. Paratyphi A) is a highly adapted, human-specific pathogen that causes paratyphoid fever. Cases of paratyphoid fever have recently been increasing, and the disease is becoming a major public health concern, especially in Eastern and Southern Asia. To investigate the genomic variation and evolution of S. Paratyphi A, a pan-genomic analysis was performed on five newly sequenced S. Paratyphi A strains and two other reference strains. A whole genome comparison revealed that the seven genomes are collinear and that their organization is highly conserved. The high rate of substitutions in part of the core genome indicates that there are frequent homologous recombination events. Based on the changes in the pan-genome size and cluster number (both in the core functional genes and core pseudogenes), it can be inferred that the sharply increasing number of pseudogene clusters may have strong correlation with the inactivation of functional genes, and indicates that the S. Paratyphi A genome is being degraded.  相似文献   

4.
Classification and nomenclature of all human homeobox genes   总被引:2,自引:0,他引:2  

Background

The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.

Results

We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.

Conclusion

We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.  相似文献   

5.

Background

Salmonella are important human and animal pathogens. Though highly related, the Salmonella lineages may be strictly adapted to different hosts or cause different diseases, from mild local illness like gastroenteritis to fatal systemic infections like typhoid. Therefore, rapid and accurate identification of Salmonella is essential for timely and correct diagnosis of Salmonella infections. The current identification methods such as 16S rRNA sequencing and multilocus sequence typing are expensive and time consuming. Additionally, these methods often do not have sufficient distinguishing resolution among the Salmonella lineages.

Methodologies/Principal Findings

We compared 27 completely sequenced Salmonella genomes to identify possible genomic features that could be used for differentiation of individual lineages. We concatenated 2372 core genes in each of the 27 genomes and constructed a neighbor-joining tree. On the tree, strains of each serotype were clustered tightly together and different serotypes were unambiguously separated with clear genetic distances, demonstrating systematic genomic divergence among the Salmonella lineages. We made detailed comparisons among the 27 genomes and identified distinct sets of genomic differences, including nucleotide variations and genomic islands (GIs), among the Salmonella lineages. Two core genes STM4261 and entF together could unambiguously distinguish all Salmonella lineages compared in this study. Additionally, strains of a lineage have a common set of GIs and closely related lineages have similar sets of GIs.

Conclusions

Salmonella lineages have accumulated distinct sets of mutations and laterally acquired DNA (e.g., GIs) in evolution. Two genes entF and STM4261 have diverged sufficiently among the Salmonella lineages to be used for their differentiation. Further investigation of the distinct sets of mutations and GIs will lead to novel insights into genomic evolution of Salmonella and greatly facilitate the elucidation of pathogeneses of Salmonella infections.  相似文献   

6.

Background

Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.

Results

Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.

Conclusion

The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.  相似文献   

7.
Recognizing the pseudogenes in bacterial genomes   总被引:9,自引:0,他引:9  
Pseudogenes are now known to be a regular feature of bacterial genomes and are found in particularly high numbers within the genomes of recently emerged bacterial pathogens. As most pseudogenes are recognized by sequence alignments, we use newly available genomic sequences to identify the pseudogenes in 11 genomes from 4 bacterial genera, each of which contains at least 1 human pathogen. The numbers of pseudogenes range from 27 in Staphylococcus aureus MW2 to 337 in Yersinia pestis CO92 (e.g. 1–8% of the annotated genes in the genome). Most pseudogenes are formed by small frameshifting indels, but because stop codons are A + T-rich, the two low-G + C Gram-positive taxa (Streptococcus and Staphylococcus) have relatively high fractions of pseudogenes generated by nonsense mutations when compared with more G + C-rich genomes. Over half of the pseudogenes are produced from genes whose original functions were annotated as ‘hypothetical’ or ‘unknown’; however, several broadly distributed genes involved in nucleotide processing, repair or replication have become pseudogenes in one of the sequenced Vibrio vulnificus genomes. Although many of our comparisons involved closely related strains with broadly overlapping gene inventories, each genome contains a largely unique set of pseudogenes, suggesting that pseudogenes are formed and eliminated relatively rapidly from most bacterial genomes.  相似文献   

8.

Background

Insertion sequences (ISs) are approximately 1 kbp long “jumping” genes found in prokaryotes. ISs encode the protein Transposase, which facilitates the excision and reinsertion of ISs in genomes, making these sequences a type of class I (“cut-and-paste”) Mobile Genetic Elements. ISs are proposed to be involved in the reductive evolution of symbiotic prokaryotes. Our previous sequencing of the genome of the cyanobacterium ‘Nostoc azollae’ 0708, living in a tight perpetual symbiotic association with a plant (the water fern Azolla), revealed the presence of an eroding genome, with a high number of insertion sequences (ISs) together with an unprecedented large proportion of pseudogenes. To investigate the role of ISs in the reductive evolution of ‘Nostoc azollae’ 0708, and potentially in the formation of pseudogenes, a bioinformatic investigation of the IS identities and positions in 47 cyanobacterial genomes was conducted. To widen the scope, the IS contents were analysed qualitatively and quantitatively in 20 other genomes representing both free-living and symbiotic bacteria.

Results

Insertion Sequences were not randomly distributed in the bacterial genomes and were found to transpose short distances from their original location (“local hopping”) and pseudogenes were enriched in the vicinity of IS elements. In general, symbiotic organisms showed higher densities of IS elements and pseudogenes than non-symbiotic bacteria. A total of 1108 distinct repeated sequences over 500 bp were identified in the 67 genomes investigated. In the genome of ‘Nostoc azollae’ 0708, IS elements were apparent at 970 locations (14.3%), with 428 being full-length. Morphologically complex cyanobacteria with large genomes showed higher frequencies of IS elements, irrespective of life style.

Conclusions

The apparent co-location of IS elements and pseudogenes found in prokaryotic genomes implies earlier IS transpositions into genes. As transpositions tend to be local rather than genome wide this likely explains the proximity between IS elements and pseudogenes. These findings suggest that ISs facilitate the reductive evolution in for instance in the symbiotic cyanobacterium ‘Nostoc azollae’ 0708 and in other obligate prokaryotic symbionts.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1386-7) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
Pseudogenes are genomic remnants of ancient protein-coding genes which have lost their coding potentials through evolution. Although broadly existed, pseudogenes used to be considered as junk or relics of genomes which have not drawn enough attentions of biologists until recent years. With the broad applications of high-throughput experimental techniques, growing lines of evidence have strongly suggested that some pseudogenes possess special functions, including regulating parental gene expression and participating in the regulation of many biological processes. In this review, we summarize some basic features of pseudogenes and their functions in regulating development and diseases. All of these observations indicate that pseudogenes are not purely dead fossils of genomes, but warrant further exploration in their distribution, expression regulation and functions. A new nomenclature is desirable for the currently called ‘pseudogenes’ to better describe their functions.  相似文献   

12.

Background  

Chlamydia have reduced genomes that reflect their obligately parasitic lifestyle. Despite their different tissue tropisms, chlamydial strains share a large number of common genes and have few recognized pseudogenes, indicating genomic stability. All of the Chlamydiaceae have homologs of the aaxABC gene cluster that encodes a functional arginine:agmatine exchange system in Chlamydia (Chlamydophila) pneumoniae. However, Chlamydia trachomatis serovar L2 strains have a nonsense mutation in their aaxB genes, and C. trachomatis serovar A and B strains have frameshift mutations in their aaxC homologs, suggesting that relaxed selection may have enabled the evolution of aax pseudogenes. Biochemical experiments were performed to determine whether the aaxABC genes from C. trachomatis strains were transcribed, and mutagenesis was used to identify nucleotide substitutions that prevent protein maturation and activity. Molecular evolution techniques were applied to determine the relaxation of selection and the scope of aax gene inactivation in the Chlamydiales.  相似文献   

13.
Among land plants, mitochondrial and plastid group II introns occasionally encode proteins called maturases that are important for splicing. Angiosperm nuclear genomes also encode maturases that are targeted to the organelles, but it is not known whether nucleus-encoded maturases exist in other land plant lineages. To examine the evolutionary diversity and history of this essential gene family, we searched for maturase homologs in recently sequenced nuclear and mitochondrial genomes from diverse land plants. We found that maturase content in mitochondrial genomes is highly lineage specific, such that orthologous maturases are rarely shared among major land plant groups. The presence of numerous mitochondrial pseudogenes in the mitochondrial genomes of several species implies that the sporadic maturase distribution is due to frequent inactivation and eventual loss over time. We also identified multiple maturase paralogs in the nuclear genomes of the lycophyte Selaginella moellendorffii, the moss Physcomitrella patens, and the representative angiosperm Vitis vinifera. Phylogenetic analyses of organelle- and nucleus-encoded maturases revealed that the nuclear maturase genes in angiosperms, lycophytes, and mosses arose by multiple shared and independent transfers of mitochondrial paralogs to the nuclear genome during land plant evolution. These findings indicate that plant mitochondrial maturases have experienced a surprisingly dynamic history due to a complex interaction of multiple evolutionary forces that affect the rates of maturase gain, retention, and loss.  相似文献   

14.
15.
According to the neutral theory of evolution, mutation and genetic drift are the only forces that shape unconstrained, neutral, gene evolution. Thus, pseudogenes (which often evolve neutrally) provide opportunities to obtain direct estimates of mutation rates that are not biased by selection, and gene families comprising functional and pseudogene members provide useful material for both estimating neutral mutation rates and identifying sites that appear to be under positive or negative selection pressures. Conifers could be very useful for such analyses since they have large and complex genomes. There is evidence that pseudogenes make significant contributions to the size and complexity of gene families in pines, although few studies have examined the composition and evolution of gene families in conifers. In this work, I examine the complexity and rates of mutation of the phytochrome gene family in Pinus sylvestris and show that it includes not only functional genes but also pseudogenes. As expected, the functional PHYO does not appear to have evolved neutrally, while phytochrome pseudogenes show signs of unconstrained evolution.  相似文献   

16.
Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.  相似文献   

17.
18.
Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann''s two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution.  相似文献   

19.
Aldehyde dehydrogenase (ALDH) superfamily represents a group of NAD(P)+-dependent enzymes that catalyze the oxidation of a wide spectrum of endogenous and exogenous aldehydes. With the advent of megabase genome sequencing, the ALDH superfamily is expanding rapidly on many fronts. As expected, ALDH genes are found in virtually all genomes analyzed to date, indicating the importance of these enzymes in biological functions. Complete genome sequences of various species have revealed additional ALDH genes. As of July 2000, the ALDH superfamily consists of 331 distinct genes, of which eight are found in archaea, 165 in eubacteria, and 158 in eukaryota. The number of ALDH genes in some species with their genomes completely sequenced and annotated, Escherichia coli and Caenorhabditis elegans, ranges from 10 to 17. In the human genome, 17 functional genes and three pseudogenes have been identified to date. Divergent evolution, based on multiple alignment analysis of 86 eukaryotic ALDH amino-acid sequences, was the basis of the standardized ALDH gene nomenclature system (Pharmacogenetics 9: 421–434, 1999). Thus far, the eukaryotic ALDHs comprise 20 gene families. A complete list of all ALDH sequences known to date is presented here along with the evolution analysis of the eukaryotic ALDHs.  相似文献   

20.
Vertebrate pseudogenes   总被引:35,自引:0,他引:35  
Pseudogenes are commonly encountered during investigation of the genomes of a wide range of life forms. This review concentrates on vertebrate, and in particular mammalian, pseudogenes and describes their origin and subsequent evolution. Consideration is also given to pseudogenes that are transcribed and to the unusual group of genes that exist at the interface between functional genes and non-functional pseudogenes. As the sequences of different genomes are characterised, the recognition and interpretation of pseudogene sequences will become more important and have a greater impact in the field of molecular genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号