首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Process Biochemistry》2007,42(3):466-471
The present study is an attempt to investigate if a long-term acclimation of digester contents to low-temperatures would improve wastewater treatment at low-temperatures similar to mesophilic ranges. The feasibility of low-temperature (15 °C) anaerobic treatment of synthetic wastewater in an upflow anaerobic sludge blanket reactor was studied using inoculum from a cattle manure digester adapted to 15 °C. The effect of varying hydraulic retention time was studied by decreasing the retention time from 7 days to 1 day. Under a constant temperature of 15 °C with a hydraulic retention time of 1 day and a corresponding loading rate of 7.2 g-chemical oxygen demand (COD)/l/day, 90–95% removal efficiency was achieved. The methane production of 250 l/kg-COD removed at standard temperature pressure (STP) is a major highlight of the study complementing the high treatment efficiency achieved. Loading rates >5 g-COD/l/day was accompanied by increase in effluent volatile fatty acids (VFA) concentrations. Due to the presence of a high concentration of active granular sludge in the lower compartment of the reactor, 80% reduction of COD occurred within the granular bed of the reactor. Treatment of low strength wastewater for a short period showed 70–75% removal efficiencies with methane yield of 300 l/kg-COD removed. Specific methanogenic activity profiles of the anaerobic biomass revealed low-temperature (15 °C) optima, indicating selection of cold-active microorganisms during the acclimation process. The SMA assays also indicate the development of a putatively psychrophilic acetoclastic methanogenic community and biogas analysis showed 75% efficiency in energy recovery as methane.  相似文献   

2.
An anaerobic submerged membrane bioreactor (AnSMBR) treating low-strength wastewater was operated for 90 days under psychrophilic temperature conditions (20 °C). Besides biogas sparging, additional shear was created by circulating sludge to control membrane fouling. The critical flux concept was used to evaluate the effectiveness of this configuration. Biogas sparging with a gas velocity (UG) of 62 m/h together with sludge circulation (94 m/h) led to a critical flux of 7 L/(m2 h). Nevertheless, a further increase in the UG only minimally enhanced the critical flux. A low fouling rate was observed under critical flux conditions. The cake layer represented the main fouling resistance after 85 days of operation. Distinctly different volatile fatty acid (VFA) concentrations in the reactor and in the permeate were always observed. This fact suggests that a biologically active part of the cake layer contributes to degrade a part of the daily organic load. Hence, chemical oxygen demand (COD) removal efficiencies of up to 94% were observed. Nevertheless, the biogas balance indicates that even considering the dissolved methane, the methane yield were always lower than the theoretical value, which indicates that the organic compounds were not completely degraded but physically retained by the membrane in the reactor.  相似文献   

3.
The increase in the number of wastewater treatment plants and the quality required for the residue produced makes it necessary to improve the efficiency of anaerobic digestion of sludge. Pretreatments of secondary sludge have shown important advantages in the elimination of volatile solids and pathogenic microorganisms from the sludge, and they have also had a positive effect on biogas production. However, such methods are associated with high operating costs. This paper shows the behavior of a autohydrolysis pretreatment, which consists of subjecting the secondary sludge to a temperature of 55 °C for 12–24 h with a limited amount of oxygen under batch operation. The pretreatment results in a high solubilization of organic matter, increasing the fluidity of the sludge and improving the biogas production. This study focuses on the evaluation of the influence of oxygen and the initial sludge concentration on the pretreatment behavior. The main results obtained showed that when autohydrolysis pretreatment was carried out for 12 h, with a high solid concentration and microaerobic conditions, the solubilization of organic matter was increased by 40%, the methane productivity was improved by 23%, and there was an overall improvement in sludge fluidity. Moreover, the energy assessment of the autohydrolysis pretreatment and anaerobic digestion system showed the energetic feasibility of this treatment method, since the increase in energy production compensates for the extra energy required to carry out the pretreatment.  相似文献   

4.
The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II.  相似文献   

5.
《Process Biochemistry》2014,49(12):2214-2219
We had proposed a novel method to reduce ammonia inhibition during thermophilic anaerobic digestion via recirculation of water-washed biogas into the headspace (R1 system) or liquid phase (R2 system) of reactors. The feasibility of reducing the ratio of recirculated biogas to biogas produced (called the biogas recirculation ratio) was investigated in the present study. Thermophilic anaerobic digestion at 53 °C and 60 °C with a biogas recirculation ratio of 150 facilitated stable digestion performance and biogas production at a higher organic loading rate of 7 g/L/d in the R1 system, while the ammonia removal efficiency increased 1.23-fold when the temperature increased from 53 °C to 60 °C. At 60 °C, the biogas recirculation ratios in the R1 and R2 systems decreased to 50 and 10, and the ammonia absorption rates were 6.1 and 8.3 mmol/L/d, respectively, without decreasing the anaerobic digestion performance. The ammonia absorption rate of 8.3 mmol/L/d in the R2 system was higher than the rate of 7.8 mmol/L/d at the biogas recirculation ratio of 150 in the R1 system. The hydrogen sulfide content in the biogas was reduced to less than 50 ppm by supplying air at 3% of the amount of biogas produced into the reactor.  相似文献   

6.
The aim of this study was to explore the potential of three aquatic weeds, water hyacinth, cabomba, and salvinia, as substrates for anaerobic digestion. A set of four pilot-scale, batch digestions were undertaken to assess the yield and quality (% methane) of biogas from each plant species, and the rate of degradation. A set of 56 small-scale (100 mL) biological methane potential (BMP) tests were designed to test the repeatability of the digestions, and the impact of drying and nutrient addition.The results of the pilot-scale digestions show that both water hyacinth and cabomba are readily degradable, yielding 267 L biogas kg?1 VS and 221 L biogas kg?1 VS, respectively, with methane content of approximately 50%. There is evidence that the cabomba fed reactor leaked midway through the digestion therefore the biogas yield is potentially higher than measured in this case. Salvinia proved to be less readily degradable with a yield of 155 L biogas kg?1 VS at a quality of 50% methane.The BMPs showed that the variability was low for water hyacinth and cabomba but high for salvinia. They also showed that the addition of nutrient solution and manure did not significantly increase the biogas yields and that drying was detrimental to the anaerobic degradability of all three substrates.Based on these results treatment of both water hyacinth and cabomba by anaerobic digestion can be recommended. Anaerobic digestion of Salvinia cannot be recommended due to the low biogas yields and high variability for this substrate.  相似文献   

7.
Excess sludge with low organic content always led to the failure of anaerobic digestion for methane production. Recently, the mild thermal pretreatment, which is usually operated at temperatures below 120 °C, has drawn much attention due to less energy consumption and no chemical addition. In this study the effect of mild thermal pretreatment (50–120 °C) on the solubilization and methane potential of excess sludge with a low concentration of organic matters was investigated. Experimental results showed that the concentration of soluble organic matters increased gradually with temperature during the mild thermal pretreatment of excess sludge. Biochemical methane potential experiments demonstrated that the potential of methane production from excess sludge was greatly enhanced by mild thermal pretreatment, and under the conditions of pretreatment temperature 100 °C and digestion time 20 d the methane yield was as high as 142.6 ± 2.5 mL/g of volatile solids. Mechanism investigation on the enhancement of methane production from excess sludge exhibited that the consumptions of sludge protein and carbohydrate, the adenosine 5′-triphosphate content of anaerobic microorganisms, the activities of key enzymes related to anaerobic digestion, and the amount of methanogens were all improved by mild thermal pretreatment, in correspondence with the production of methane.  相似文献   

8.
The anaerobic digestion technology is a biological treatment widely used to reduce the pollution load of wet waste biomass. In this work we present the results obtained by performing extensive experiments of anaerobic digestion of slaughterhouse waste, tomato industry waste and olive oil industry waste in continuous mode, which were designed to demonstrate that anaerobic digestion is an effective technology from an environmental and economic point of view.Biogas yields obtained are between 35.22 and 5.45 Nm3 biogas/m3 olive oil industry waste and tomato industry waste respectively and the slaughterhouse wastes achieve intermediate production, 30.86 Nm3 biogas/m3 municipal slaughterhouse waste and 22.53 Nm3 biogas/m3 Iberian pig slaughterhouse waste. Moreover, it possible to degrade between 63.46 and 75.3% of the initial organic matter.If these results are analyzed, the environmental, energetic economic benefits of anaerobic digestion can be quantified. Biomethanation of all these wastes generated annually in Extremadura could prevent the emission of 134,772 t of equivalent carbon dioxide, generate an energy similar to that provided by 2826 toe and reach payback times from 3.29 to 3.75 years for anaerobic digestion plant designed to treat the wastes generated by a medium-sized industry. So, we have fulfilled all the planned aims.  相似文献   

9.
Anaerobic digestion is widely used in bioenergy recovery from waste. In this study, a half-submerged, integrated, two-phase anaerobic reactor consisting of a top roller acting as an acidogenic unit and a recycling bottom reactor acting as a methanogenic unit was developed for the codigestion of wheat straw (WS) and fruit/vegetable waste (FVW). The reactor was operated for 21 batches (nearly 300 d). Anaerobic granular sludge was inoculated into the methanogenic unit. The residence time for the mixed waste was maintained as 10 d when the operation stabilized, and the temperature was kept at 35 °C. The highest organic loading rate was 1.37 kg VS/(m3 d), and the maximum daily biogas production was 328 L/d. Volatile solid removal efficiencies exceeded 85%. WS digestion could be confirmed, and efficiency was affected by both the ratio of WS to FVW and the loading rate. The dominant bacteria were Bacteroides-like species, which are involved in glycan and cellulose decomposition. Methanogenic community structures, pH levels, and volatile fatty acid concentrations in the acidogenic and methanogenic units differed, indicating successful phase separation. This novel reactor can improve the mass transfer and microbial cooperation between acidogenic and methanogenic units and can efficiently and steady codigest solid waste.  相似文献   

10.
A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 °C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 °C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.  相似文献   

11.
Activated sludge obtained from two municipal wastewater treatment facilities (WWTF) was used as seed sludge for enriched nitrifiers, which were later entrapped in polyvinyl alcohol. Seed sludge from one WWTF was acclimated to high ammonia level (1813 mg NH3-N l?1) through the return of sludge digester supernatant back to primary clarifier while seed sludge from the other WWTF was un-acclimated. To elucidate on how to control partial nitrification by entrapped cells, which could be different from suspended cells, kinetics of entrapped enriched nitrifiers were studied using a respirometric assay. The community of nitrifiers within the entrapment matrix, which was observed by fluorescence in situ hybridization (FISH) technique, was related to the nitritation and nitratation kinetics based on oxygen uptake rate. Maximum oxygen uptake rate, and substrate and oxygen affinities of both ammonia oxidizing bacteria (AOB) for nitritation and nitrite oxidizing bacteria (NOB) for nitratation in entrapped cells were lower than those of corresponding suspended cells. Under dissolved oxygen (DO) limiting conditions, nitratation was more suppressed than nitritation for suspended cells, while for the entrapped cells, the results were the contrary. A free ammonia (FA) inhibition affected only the un-acclimated sludge. Either FA inhibition or DO limitation might not be a sole effective control parameter to achieve partial nitrification by entrapped cells. FISH results revealed that Nitrosomonas europaea was the dominant AOB while Nitrobacter species was the dominant NOB in all cases. Heterotrophs were also present in the entrapment at 22.8 ± 18.6% and 41.5 ± 4.3% of total bacteria for acclimated and un-acclimated originated sludge. The availability of substrate and oxygen governed the distributions of AOB, NOB and heterotrophs within the entrapment and nitritation kinetics of entrapped nitrifiers.  相似文献   

12.
The hybrid up flow anaerobic sludge blanket reactor was evaluated for efficacy in reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of bulk drug pharmaceutical wastewater under different operational conditions. The start-up of the reactor feed came entirely with glucose, applied at an organic loading rate (OLR) 1 kg COD/m3 d. Then the reactor was studied at different OLRs ranging from 2 to 11 kg COD/m3 d with pharmaceutical wastewater. The optimum OLR was found to be 9 kg COD/m3 d, where we found 65–75% COD and 80–94% of BOD reduction with biogas production containing 60–70% of methane and specific methanogenic activity was 320 ml CH4/g-VSS d. By the characterization studies of effluent using GC–MS, the hazardous compounds like phenol, l,2-methoxy phenol, 2,4,6-trichloro phenol, dibutyl phthalate, 1-bromo naphthalene, carbamazepine and antipyrine were present. After the treatment, these compounds degraded almost completely except carbamazepine. Thermophilic methanothrix and methanosaetae like bacteria are present in the granular sludge.  相似文献   

13.
《Process Biochemistry》2007,42(2):193-198
A pilot-scale vertical submerged membrane bioreactor (VSMBR) with anoxic and oxic zones in one reactor was operated in an attempt to reduce the problems concerning effective removal of organic matter and nutrients from municipal wastewater. Source water with total chemical oxygen demand (TCOD)/total nitrogen (TN) ratio of 5.5 was treated at various temperatures (13–25 °C) over an interval of about 1 year. As a result, total suspended solid (TSS) and TCOD were removed by 100% and higher than 98%, respectively. Moreover, the average removal efficiencies of TN and total phosphorus (TP) were found to be 74% and 78% at 8 h-hydraulic retention time (HRT) and 60-days sludge retention time (SRT). Under these conditions, the specific removal rates (SRR) of TN and TP were found to be 0.093 kg N m−3 day−1 and 0.008 kg P m−3 day−1, and the daily production of excess sludge (DPES), 0.058 kg TSS day−1.  相似文献   

14.
Biological treatment of synthetic wastewater containing Cu(II) ions was realized in an activated sludge unit with pre-adsorption of Cu(II) onto powdered waste sludge (PWS). Box-Behnken experimental design method was used to investigate Cu(II), chemical oxygen demand (COD) and toxicity removal performance of the activated sludge unit under different operating conditions. The independent variables were the solids retention time (SRT, 5–30 d), hydraulic residence time (HRT, 5–25 h), feed Cu(II) concentration (0–50 mg L?1) and PWS loading rate (0–4 g h?1) while percent Cu(II), COD, toxicity (TOX) removals and the sludge volume index (SVI) were the objective functions. The data were correlated with a quadratic response function (R2 = 0.99). Cu(II), COD and toxicity removals increased with increasing PWS loading rate and SRT while decreasing with the increasing feed Cu(II) concentration and HRT. Optimum conditions resulting in maximum Cu(II), COD, toxicity removals and SVI values were found to be SRT of 30 d, HRT 15 h, PWS loading rate 3 g h?1 and feed Cu(II) concentration of less than 30 mg L?1.  相似文献   

15.
We investigated the dynamics of the microfauna community in activated sludge, with special reference to sludge bulking, in two parallel municipal wastewater treatment systems in Beijing, China over a period of 14 months. Annual cyclic changes in microfauna community structures occurred in both systems. RELATE analysis based on Spearman's Rank correlation indicated that microfauna community structures were highly correlated with the sludge volume index (SVI) (p < 0.001), which indicates sludge settleability. Nutrient conditions of raw sewage (p < 0.01) and hydraulic retention time (HRT) (p < 0.05) were also related to microfauna community structures. Abundances of the species Epistylis plicatilis and Vorticella striata increased significantly with an increase in SVI (p < 0.001) and decrease in water temperature (p < 0.001), suggesting that sludge bulking may have created favorable conditions for the two species, even under unfavorable temperature conditions. Sludge de-flocculation primarily due to the excessive growth of Microthrix parvicella-like filaments could be an important driving force for the microfauna community changes. The release of flocculated non-filamentous bacteria may represent a suitable food source for these species. The two species may be considered as potential bioindicators for sludge bulking.  相似文献   

16.
The aim of this study was to evaluate the possibilities of replacing the energetic crop (EC) in the feed-in mixture (ingestate) with the organic fraction of municipal solid waste (OFMSW), in an anaerobic full-scale plant comprising four continuous stirred tank reactors (CSTRs) along with post-digester. A full-scale plant performing anaerobic digestion (AD) was monitored for 8 months, and during this period, 55 samples of both ingestates and digestates from the digesters (hydraulic retention time, HRT, of 40 d) and post-digester (HRT of 10 d) were collected before and after OFMSW introduction and analyzed for both biological and chemical parameters. The result obtained showed that substitution of EC (Mix A) with OFMSW (Mix B) did not lead to substantial modification of the feed-in mixture and AD process. Mixtures A and B gave similar specific biogas (i.e., 585 ± 198 m3 Mg TS-1 and 567 ± 162 m3 Mg TS-1 for Mix A and B, respectively), showing high process performances, i.e., 95% of the total anaerobic biogas producible was produced during the AD processes (HRT of 50 d). The digestates produced showed similar characteristics and can be potentially used in agriculture. The OFMSW offers new opportunities for farmers to produce renewable energy, by lowering the cost of the biomass and producing a useful fertilizer/amendment product.  相似文献   

17.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

18.
Two 5 L anaerobic reactors were used to monitor the mesophilic anaerobic digestion of source sorted organic fraction of municipal solid wastes (SS-OFMSW) focusing the attention on the response of alkalinity ratios. Intermediate/partial alkalinity (IA/PA) ratio can be used as a simple and cheaper alternative to VFAs analysis when digester's stability needs to be assessed in full-scale plants treating these organic wastes. However, lab-scale studies in order to establish a specific limit value of IA/PA referred to SS-OFMSW had not been conducted. In this study, a reference reactor (R1) was operated at low organic loading rates (OLR) and high hydraulic retention times (HRT) during 165 days. Besides, severe disturbances were applied to a second reactor (R2) during 281 days by means of increasing both HRT and OLR in order to assess the digester response under continuous overload conditions. The obtained results show that an IA/PA ratio of below 0.3 is recommended to maintain total VFAs between 2.5 and 3.5 kg m−3 and achieve a stable reactor performance treating SS-OFMSW in a range of total alkalinity (TA) between 13 and 15 kg CaCO3 m−3. These results provide a starting point to develop further works in full-scale digesters, in order to improve the monitoring and process control of full-scale anaerobic reactors treating SS-OFMSW.  相似文献   

19.
Optimization of intravascular shear stress assessment in vivo   总被引:1,自引:0,他引:1  
The advent of microelectromechanical systems (MEMS) sensors has enabled real-time wall shear stress (WSS) measurements with high spatial and temporal resolution in a 3-D bifurcation model. To optimize intravascular shear stress assessment, we evaluated the feasibility of catheter/coaxial wire-based MEMS sensors in the abdominal aorta of the New Zealand white (NZW) rabbits. Theoretical and computational fluid dynamics (CFD) analyses were performed. Fluoroscope and angiogram provided the geometry of aorta, and the Doppler ultrasound system provided the pulsatile flow velocity for the boundary conditions. The physical parameters governing the shear stress assessment in NZW rabbits included (1) the position and distance from which the MEMS sensors were mounted to the terminal end of coaxial wire or the entrance length, (Le), (2) diameter ratios of aorta to the coaxial wire (Daorta /Dcoaxial wire=1.5–9.5), and (3) the range of Reynolds numbers (116–1550). At an aortic diameter of 2.4 mm and a maximum Reynolds number of 212 (a mean Reynolds number of 64.2), the time-averaged shear stress (τave) was computed to be 10.06 dyn cm?2 with a systolic peak at 33.18 dyn cm?2. In the presence of a coaxial wire (Daorta /Dcoaxial wire=6 and Le=1.18 cm), the τave value increased to 15.54 dyn cm?2 with a systolic peak at 51.25 dyn cm?2. Real-time intravascular shear stress assessment by the MEMS sensor revealed an τave value of 11.92 dyn cm?2 with a systolic peak at 47.04 dyn cm?2. The difference between CFD and experimental τave was 18.5%. These findings provided important insights into packaging the MEMS sensors to optimize in vivo shear stress assessment.  相似文献   

20.
《Ecological Engineering》2005,24(3):175-183
An integrated pig-biogas-vegetable greenhouse system (PBVGS) was designed and studied in Laiwu, Shandong Province of North China from 2001 to 2002, where 20 groups of PBVGS and their corresponding controls were investigated. The PBVGS involves building a pigsty and a biogas digester in a vegetable greenhouse, putting pig dung into the biogas digester for fermentation, using the biogas for increasing illumination and air temperature in the greenhouse, and using the fermented waste as organic manure. The data indicate that the pig growth, biogas production and vegetable production were effectively improved in PBVGS, and that ecological, economic and social benefits were simultaneously achieved. The average annual net income of a standard PBVGS was 10,900 RMB, with an increase of 58.0% over its traditional non-integrated parts. It could use up 14,000 kg fresh pig dung and produce 10,000 kg organic manure one year for the improvement of soil fertility. The daily net weight increase for a pig in PBVGS averaged 0.82 kg, 227.6% higher than its controls. The average yield per hectare of cucumbers and tomatoes, increased by 18.4 and 17.8% over their controls, respectively. In addition, the biogas produced in the digester increased by 32.4% annually. Based on biogas fermentation, the PBVGS provides a fine ecological cycle from livestock feeding to vegetable production, resulting in a higher conversion efficiency in nutrient cycle and energy flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号