首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Over the last 30 years, the crown-of-thorns starfish (Acanthaster planci) has caused extensive damage to many reefs in the Great Barrier Reef Province. Surface sediment of two such reefs, John Brewer Reef and Green Island Reef, has high densities of A. planci skeletal elements relative to their abundance in the surface sediment of Heron Island Reef which, during the same 30 years, maintained very low-density starfish populations. Carbon-14 accelerator mass spectrometry (AMS) dating indicates that skeletal elements from the surface sediment of John Brewer and Green Island Reefs are of contemporary age. Core sampling shows that subsurface sediment at John Brewer and Green Island Reefs contains A. planci element densities comparable to those found in the surface sediment at these localities. Physical and biological eworking of elements within the sediment precludes the recognition of individual outbreaks in core stratigraphy. AMS element dates and conventional bulk sediment dates show that subsurface elements are generally prehistoric and conform to an age structure preserved in the sediment pile. The density and distribution of subsurface elements suggest that A. planci outbreaks are not a recent phenomenon, but have been an integral part of the ecosystem for at least 7000 years on John Brewer Reef and 3000 years on Green Island Reef.  相似文献   

2.
Larger foraminifera are an important component of coastal sediments around Fongafale Island, Funafuti Atoll, Tuvalu, and at least 10 species are present. In the shallow lagoon, foraminifera (mainly Amphistegina lessonii, A. lobifera, Baculogypsina sphaerulata, Calcarina spengleri, Marginopora vertebralis, and Sorites marginalis) are the dominant component of sand and gravel, followed in decreasing order of abundance by calcareous red and green algae, coral, and molluscs. In deeper water, Halimeda replaces the foraminifera. Close inshore, abrasion removes Halimeda and may reduce the number of foraminiferal tests. There is some sediment movement in both onshore and offshore directions although offshore transport appears minor. On land, dissolution that preferentially removes aragonite may increase the proportion of foraminiferal tests to as much as 83% of the subsurface sediment. Sediments on the ocean side are dominated by coral and coralline red algal debris thrown up in 1972 by cyclone Bebe and later moved inshore and lagoonward.Communicated by P.K. Swart  相似文献   

3.
The sediments and calcareous organisms on the outer reefal shelf of the Central Region of the Great Barrier Reef were collected and observed by SCUBA diving and research vessel techniques (including underwater television) to understand the production and processes of deposition of the sediment. The carbonate grains are mainly sand and gravel size and solely of skeletal origin. Over the whole area the major CaCO3 producers, in order of decreasing importance are: benthic foraminiferans (chiefly Operculina, Amphistegina, Marginopora, Alveolinella and Cycloclypeus), the calcareous green alga Halimeda, molluscs and corals. Coral abundance is high only close to reefs and submerged rocky substrates. Benthic foraminiferal sands dominate the inter-reef areas i.e. the bulk of the shelf, and Halimeda gravels form an outer shelf band between 60 and 100 m depths. Seven distinct facies are recognised after quantitative analyses of the sediments. These are: A. Shelf edge slope (>120 m depth); B. Shelf edge (with rocky outcrops); C. Outer shelf with high Halimeda (>40%); D. Inter-reef I; E. Inter-reef II ( 100 m depth but >2% pelagics); F. Lee-ward reef talus wedge (<2 km from sea level reefs); G. Lagoonal.  相似文献   

4.
Complex relationships exist between tropical reef ecology, carbonate (CaCO3) production and carbonate sinks. This paper investigated census-based techniques for determining the distribution and carbonate production of reef organisms on an emergent platform in central Torres Strait, Australia, and compared the contemporary budget with geological findings to infer shifts in reef productivity over the late Holocene. Results indicate that contemporary carbonate production varies by several orders of magnitude between and within the different reef-flat sub-environments depending on cover type and extent. Average estimated reef-flat production was 1.66 ± 1.78 kg m−2 year−1 (mean ± SD) although only 23% of the area was covered by carbonate producers. Collectively, these organisms produce 17,399 ± 18,618 t CaCO3 year−1, with production dominated by coral (73%) and subordinate contributions by encrusting coralline algae (18%) articulated coralline algae, molluscs, foraminifera and Halimeda (<4%). Comparisons between the production of these organisms across the different reef-flat zones, surface sediment composition and accumulation rates calculated from cores indicate that it is necessary to understand the spatial distribution, density and production of each major organism when considering the types and amounts of carbonate available for storage in the various reef carbonate sinks. These findings raise questions as to the reliability of using modal production rates in global models independent of ecosystem investigation, in particular, indicating that current models may overestimate reef productivity in emergent settings. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
Coral reefs are highly dependent on the mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium. These dinoflagellates spend part of their life cycle outside the coral host and in the majority of the cases have to re-infect corals each generation. While considerable insight has been gained about Symbiodinium in corals, little is known about the ecology and biology of Symbiodinium in other reef microhabitats. This study documents Symbiodinium associating with benthic macroalgae on the southern Great Barrier Reef, including some Symbiodinium that are genetically close to the symbiotic strains from reef-building corals. It is possible that some of these Symbiodinium were in hospite, associated to soritid foraminifera or ciliates; nevertheless, the presence of Symbiodinium C3 and C15 in macroalgal microhabitats may also suggest a potential link between communities of Symbiodinium associating with both coral hosts and macroalgae.  相似文献   

6.
In this study we investigate the species composition and spatial distribution patterns of Rose Bengal stained and unstained benthic foraminifera from the central part of the Sunda Shelf in the south-western South China Sea in relation to environmental factors. The uppermost centimetre of the surface sediments (> 150 μm) from 45 sites from inner (60 m) to outer shelf (226 m) water depths revealed 584 species including 443 stained species.The univariate analyses of individual species abundances and community parameters and next canonical correspondence analysis were used to relate the faunal data to a set of measured environmental parameters. Four biofacies recognised on the Sunda Shelf are most strongly correlated to water depth, primary production and sediment type of the habitat. The inner shelf biofacies (CCA cluster A), defined by Ammomassilina alveoliniformis and Asterorotalia pulchella, occurs in fine grained sediments classified as modern terrigenous mud in the region with the highest primary production values. The high-energy inner shelf biofacies (CCA cluster B), defined by Heterolepa dutemplei and Textularia lythostrota, occurs in modern terrigenous sand and silt dominated sediments, northeast from the Natuna Island. The high-energy outer shelf biofacies (CCA cluster C), defined by Cibicidoides pachyderma and Textularia bocki, is sandwiched between assemblages of biofacies D. It occurs in the region characterised by neritic relict sand. In the shallow-waters on the Sunda Shelf the relationship of benthic foraminiferal faunal composition to grain size of sediments indirectly signals the prevailing bottom hydrodynamic conditions. The dominance of the epibenthic foraminifera attached to bigger particles (e.g. Cibicides lobatulus, Planulina arimiensis) and much higher abundances of empty tests suggest greater current velocities northeast of Natuna Island. The outer shelf biofacies (CCA cluster D) is defined by Facetocochlea pulchra and Bulimina marginata. It occurs in an area covered with modern terrigenous silt and mud and is characterised by lower annual primary production, but seasonally influenced by weak upwelling.  相似文献   

7.
Territorial damselfish are important herbivores on coral reefs because they can occupy a large proportion of the substratum and modify the benthic community to promote the cover of food algae. However, on coastal coral reefs damselfish occupy habitats that are often dominated by unpalatable macroalgae. The aim of this study was to examine whether damselfish can maintain distinctive algal assemblages on a coastal reef that is seasonally dominated by Sargassum (Magnetic Island, Great Barrier Reef). Here, three abundant species (Pomacentrus tripunctatus, P. wardi and Stegastes apicalis) occupied up to 60% of the reef substrata. All three species promoted the abundance of food algae in their territories. The magnitudes of the effects varied among reef zones, but patterns were relatively stable over time. Damselfish appear to readily co-exist with large unpalatable macroalgae as they can use it as a substratum for promoting the growth of palatable epiphytes. Damselfish territories represent patches of increased epiphyte load on macroalgae, decreased sediment cover, and enhanced cover of palatable algal turf.  相似文献   

8.
Data on Acanthaster planci skeletal element distribution in reefal subsurface sediment cores of two reefs of the central Great Barrier Reef (Walbran et al. 1989 a, b) were shown to be readily interpretable after a timescaled evaluation of element frequencies. After re-scaling using 14C bulk sediment ages, high frequencies of elements were recognized in the top layers of John Brewer Reef sediment cores and attributed to the two recent A. planci population outbreaks. Beneath these top layers, the subsurface sediments contain consistently low element frequencies down to bulk-sediment ages of 7750±100 years BP. From Green Island, the maximum abundance of skeletal elements was found in the sediment layers of about 1900 to 2300 years BP in some cores, but patterns were too inconsistent and the number of cores too small to suggest former A. planci outbreaks from these data. A strong correlation was found between the frequency of A. planci elements and the rate of sedimentation per time unit in sediment cores of all sites. This correlation was attributed to increased erosion of coral reefs as a consequence of the activities of high-density populations of A. planci. We conclude that reef erosion, after intense predation of reef-constructing organisms, has to be considered when causes of deterioriation of reef growth or termination of a reef facies in the geological past are discussed.  相似文献   

9.
Coral reef islands are among the most vulnerable environments on Earth to climate change because they are low lying and largely constructed from unconsolidated sediments that can be readily reworked by waves and currents. These sediments derive entirely from surrounding coral reef and reef flat environments and are thus highly sensitive to ecological transitions that may modify reef community composition and productivity. How such modifications – driven by anthropogenic disturbances and on‐going and projected climatic and environmental change – will impact reef island sediment supply and geomorphic stability remains a critical but poorly resolved question. Here, we review the unique ecological–geomorphological linkages that underpin this question and, using different scenarios of environmental change for which reef sediment production responses can be projected, explore the likely resilience of different island types. In general, sand‐dominated islands are likely to be less resilient than those dominated by rubble grade material. However, because different islands typically have different dominant sediment constituents (usually either coral, benthic foraminifera or Halimeda) and because these respond differently to individual ecological disturbances, island resilience is likely to be highly variable. Islands composed of coral sands are likely to undergo major morphological change under most near‐future ecological change scenarios, while those dominated by Halimeda may be more resilient. Islands composed predominantly of benthic foraminifera (a common state through the Pacific region) are likely to exhibit varying degrees of resilience depending upon the precise combination of ecological disturbances faced. The study demonstrates the critical need for further research bridging the ecological–geomorphological divide to understand: (1) sediment production responses to different ecological and environmental change scenarios; and (2) dependant landform vulnerability.  相似文献   

10.

Of all reef-building coral species, 80–85 % initially draw their intracellular symbionts (dinoflagellates of the genus Symbiodinium) from the environment. Although Symbiodinium cells are crucial for the growth of corals and the formation of coral reefs, little is known about how corals first encounter free-living Symbiodinium cells. We report how the supply of free-living Symbiodinium cells to the benthos by adult corals can increase the rate of horizontal symbiont acquisition for conspecific recruits. Three species of newly settled aposymbiotic (i.e., symbiont-free) corals were maintained in an open aquarium system containing: sterilized sediment and adult coral fragments combined; adult coral fragments alone; sterilized sediment alone; or seawater at Heron Island, Great Barrier Reef, Australia. In all instances, the combination of an adult coral and sediment resulted in the highest symbiont acquisition rates by juvenile corals (up to five-fold greater than seawater alone). Juvenile corals exposed to individual treatments of adult coral or sediment produced an intermediate acquisition response (<52 % of recruits), and symbiont acquisition from unfiltered seawater was comparatively low (<20 % of recruits). Additionally, benthic free-living Symbiodinium cells reached their highest densities in the adult coral + sediment treatment (up to 1.2 × 104 cells mL−1). Our results suggest that corals seed microhabitats with free-living Symbiodinium cells suitable for many coral species during the process of coral recruitment.

  相似文献   

11.
Faunal analysis of fossil foraminifera from marine gravity and piston cores collected by the Japanese Antarctic Research Expeditions (1981 and 1992) is used to estimate the impact of the latest Quaternary paleoceanography on coastal environments of the eastern part of Lützow-Holm Bay, East Antarctica.Accelerator Mass Spectrometry (AMS) carbon-14 ages produced from sedimentary organic carbon were less than 16 ka (non-corrected). Detailed correlation among submarine cores and Holocene elevated marine deposits exposed on the eastern shore of the embayment is difficult due to the indefinite reservoir correction value for marine organic matter and to upward-increasing abnormal ages for some cores.A local carbonate dissolution level can be delineated around the present depth of 300–400 m or shallower in the eastern part of Lützow-Holm Bay during the Holocene, based on distributional trends of arenaceous, calcareous benthic, and planktonic foraminifera recognized within a depth less than 600 m. Downcore recovery of calcareous foraminifera containing Bulimina aculeata from two cores obtained in a drowned glacial trough deeper than 600 m situated far beyond the dissolution depth of CaCO3 indicates the incursion of warm, high-nutrient, and CaCO3-saturated Circumpolar Deep Water (CDW) from the offshore area along the trough toward the southeastern coast of Lützow-Holm Bay during the Holocene. The intrusion of CDW impacted on the marine environments of the southeastern coast, thereby contributing to peripheral retreat of the ice sheet as well as increasing calcareous benthic foraminiferal productivity along the southeastern coast of Lützow-Holm Bay.  相似文献   

12.
Influence of benthic organisms on solute transport in lake sediments   总被引:2,自引:2,他引:0  
Increased inputs of nutrients into the waters of Lake Okeechobee has raised concern that the lake is becoming hypereutrophic. One aspect in understanding the overall cycling and dynamics of the nutrients in the system is the effect of benthic organisms on solute transport. Various diffusional models have been used to approximate the effect of benthic organisms on solute transport within sediments using diffusion coefficient values which represent the pooled contributions of molecular diffusion (D s ) and enhanced solute mixing due to macrobenthos activity (D i ). The objective of this study was to investigate the impact of benthic activity on solute transport by measuringD s (i.e., no benthic activity) and an apparent-dispersion or mixing coefficientD m (i.e., with benthic activity) for the four major sediment types of Lake Okeechobee, Florida using a reservoir technique. This method involved monitoring the depletion of a conservative tracer (tritiated water) from the overlying water (reservoir) resulting from transport into sediments using disturbed sediments repacked in cores (3.2 cm diam.) and undisturbed cores (3.2 to 12 cm diam.) obtained from the lake. Additional estimates ofD m andD s were also obtained by measuring tracer concentration profiles in the sediment cores at the end of a specified diffusion period. Molecular diffusion coefficients (D s ) measured forrepacked cores of sand, littoral, mud and peat sediments ranged from 0.90 to 1.29 cm2 d−1, and estimates ofD s were slightly higher in undisturbed cores without benthic organisms.D m values for undisturbed cores of mud, sand and littoral sediments having macrobenthic populations ranged from 2.09 to 24.78 cm2 d−1; values that were 1.6 to 15 times higher than those in sediments without benthic activity. Undisturbed cores of varying diameter from mud sediments had similar estimates ofD m for tritium; however, the undisturbed cores with larger diameters from littoral sediments yielded larger estimates ofD m , reflecting the heterogeneity of benthic population densities and activity. Therefore,D s estimates may not adequately represent transport processes for mud, sand and littoral sediments of Lake Okeechobee; hence careful consideration should be given to the role of benthic organisms in the overall transport of solutes across the sediment-water interface. A contribution of the Florida Agricultural Experiment Station Journal Series No. R-01150. A contribution of the Florida Agricultural Experiment Station Journal Series No. R-01150.  相似文献   

13.
Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification – CaCO3 dissolution) and net community organic carbon production (NCP = primary production ? respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.  相似文献   

14.
In this work, we evaluate the effect of the introduced reef-building polychaete Ficopomatus enigmaticus on the benthic community and on sediment characteristics of a southwestern Atlantic coastal lagoon. When reefs were experimentally added, density of the native crab Cyrtograpsus angulatus dramatically increased in a short time period. After reefs and crabs were experimentally transplanted as a unit, they decreased the density of the free-living soft-bottom polychaetes Heteromastus similis and Laeonereis acuta. Exclusion/inclusion caging experiments showed that Cyrtograpsus negatively affect the density of soft-bottom polychaetes (H. similis, L. acuta, Nephtys fluviatilis) and ostracodes. Our results showed that this effect is much higher in areas populated by reefs because of the increased density of crabs that find shelter under the reefs. Thus, reefs have a cascading effect on the native benthic community within the areas colonized by them. Analysis of crab stomach contents indicated that crabs feed on a wide variety of prey, including infaunal organisms, small gastropods and also algae. When reefs and crabs were experimentally added, the amount of bivalve shells on superficial sediments increased. Our results suggest that this bivalve shell accumulation and sediment composition are due to the reworking activity of Cyrtograpsus in the sediment where they dig burrows. The invasive habits of Ficopomatus may be favoring crabs to have a major effect on the integrity of the native community in the lagoon. Ficopomatus should be considered a bioengineer organism by creating and regulating refuge for other species, altering the interactions between preexistent species and also by changing the physical factors of the invaded environment.  相似文献   

15.
Inhaca Island (southern Mozambique) is located in a high-latitude setting along the seaward margins of the estuarine Maputo Bay and is subject to fluctuations in temperature and salinity, and high sedimentation and turbidity levels. Coral reefs are developed sporadically along the margins of intertidal channels, but framework development is severely restricted. Coral growth is bathymetrically limited (never exceeding 6-m depth), and framework accumulation is only present in the upper 1–2 m. Massive Porites sp. produce a basic reef structure, with other coral genera (mainly Acropora sp., Favia sp., Platygyra sp., Pocillopora sp., and Montipora sp.) colonizing available substrata. Sediment samples also indicate restricted carbonate sediment production, with siliciclastics (mainly quartz) a major sediment contributor (often >90%) and carbonate grain assemblages differing from those normally associated with lower-latitude reefs. Although corals, molluscs and coralline algae (including rhodoliths) represent dominant grain constituents, Halimeda is absent and there is a low diversity (four species identified) of benthic foraminifera (mainly Amphistegina sp.). Grain associations are therefore somewhat transitional in character, comprising elements of both tropical (chlorozoan) and temperate (foramol) grain assemblages. These patterns of reef and associated carbonate production emphasize the marginal character of these reef environments, which form one end member in a broad spectrum of marginal reef systems that are now being identified in a range of both high- and low-latitude settings.  相似文献   

16.
This study focussed on the demography and ecology of Scolopsis bilineatus at three locations on the Great Barrier Reef: the Lizard Island Group, Orpheus Island and One Tree Island. Scolopsis bilineatus lived for up to 16 years and had four distinct life‐history stages, which varied in their distribution patterns, habitat use and reproductive behaviour. Pre‐maturational sex change occurred whereby all males were derived from immature females, and males grew faster and larger than females. Small females and larger males generally formed pairs, which influenced their spatial distributions at small scales. Distributions of S. bilineatus were influenced by depth and exposure within reefs, particularly for juveniles, and most fish were found in shallow, sheltered habitats. Abundance was influenced by benthic cover, and was higher in areas of high coral cover and low where algae were abundant. Habitat associations were stronger at the microhabitat scale, and shelter sites were important for adults. Ontogenetic changes in microhabitat associations were found: juveniles occupied sand and rubble, and adults occupied shelters such as caves and overhangs. Adults showed site fidelity for shelter sites over a period of 4 days and returned to specific shelter sites repeatedly. These findings illustrate the importance of understanding the spatial ecology and habitat use of coral reef fishes, particularly with reference to size‐based changes within species.  相似文献   

17.
Current monitoring methods to assess benthic impacts of marine finfish aquaculture are based on complex biological indices and/or geochemistry data. The former requires benthic macrofauna morpho‐taxonomic characterization that is time‐ and cost‐intensive, while the latter provides rapid assessment of the organic enrichment status of sediments but does not directly measure biotic impacts. In this study, sediment samples were collected from seven stations at six salmon farms in British Columbia, Canada, and analyzed for geochemical parameters and by eDNA metabarcoding to investigate linkages between geochemistry and foraminifera. Sediment texture across farm sites ranged from sand to silty loam, while the maximum sediment pore‐water sulphide concentration at each site ranged from 1,000 to 13,000 μM. Foraminifera alpha diversity generally increased with distance from cage edge. Adonis analyses revealed that farm site explained the most variation in foraminifera community, followed by sediment type, enrichment status, and distance from cage edge. Farm‐specific responses were observed in diversity analyses, taxonomic difference analyses, and correlation analyses. Results demonstrated that species diversity and composition of foraminifera characterized by eDNA metabarcoding generated signals consistent with benthic biodiversity being impacted by finfish farming activities. This substantiates the validity of eDNA metabarcoding for augmenting current approaches to benthic impact assessments by providing more cost‐effective and practicable biotic measures than traditional morpho‐taxonomy. To capitalize on this potential, further work is needed to design a new nomogram that combines eDNA metabarcoding data and geochemistry data to enable accurate monitoring of benthic impacts of fish farming in a time‐ and cost‐efficient way.  相似文献   

18.
Seven benthic foraminiferal assemblages were identified in vibracores through Holocene lagoons of three Belize atoll lagoons (Glovers Reef, Lighthouse Reef, Turneffe Islands). These include (1) the low-diversity Cribroelphidium assemblage (2) the Cribroelphidium-Elphidium assemblage (3) the Quinqueloculina-Triloculina-Peneroplis assemblage (4) the high-diversity miliolid assemblage (5) the Archaias-miliolid assemblage (6) the low-diversity miliolid assemblage, and (7) the mixed assemblage. Altogether, 109 species and 56 genera were identified. The highest diversities are observed in the largest lagoon (Turneffe Islands), whereas one of the smaller lagoons (Glovers Reef) exhibits the lowest diversities during the Holocene. No significant changes in diversity over time occur, however, a slight trend to higher diversity may be observed through the Holocene, suggesting that the foraminiferal faunas in the atolls are in a diversification stage. Faunal diversity in atoll lagoons appears to be controlled largely by habitat size, habitat heterogeneity, and water circulation. Habitat age and water depth only play minor roles. Substrate texture, water depth, and turbidity influence the predominant modes of life of benthic foraminifera encountered in the lagoons (epifaunal versus infaunal versus symbiont-bearing). Time-averaging effects were not observed, even though lagoonal sedimentation rates fluctuate in individual cores and the three lagoons, and despite the fact that sediments are modified through bioturbation by callianassid shrimps. This finding underlines the potential of benthic foraminifera for paleoecological studies in the fossil record of reefs and carbonate platforms.  相似文献   

19.
Bioturbating lugworms (Arenicola marina) were excluded from 400 m2 plots of intertidal sand which initiated sequences of direct and indirect changes in the structure of the benthic community. The sessile, tube-building species Polydora cornuta and Lanice conchilega took advantage of the absence of lugworms and settled preferentially on lugworm exclusion plots. The protruding tubes provided attachment for an ephemeral development of algal tufts (Berkeleya colonies and Enteromorpha thalli) which in turn enhanced settlement of the juvenile drifting clams Mya arenaria and Macoma balthica. This causal chain of enhanced bivalve settlement in the presence of above-ground structures, like animal tubes and algae, on lugworm exclusion plots occurred in 2 years at different tidal zones with different tube builders, algae and juvenile clams. A significant response of L. conchilega in a year with relatively low lugworm abundances at the entire site suggests that not only the actual absence of large bioturbators was responsible for the establishment of tube-dwelling species, but also a cumulative change of the sediment in exclusion plots since the onset of the experiment. While the sediment on lugworm plots remained permeable, fine particles and organic matter accumulated at exclusion plots. It is suggested that these differences in sediment characteristics were the product of divergent benthic engineering by sediment destabilizing lugworms on control plots and sediment stabilizing species on exclusion plots. Cumulative changes of the sedimentary habitat and cascading effects in the benthic community may explain the persistence of patches that are dominated by either sediment stabilizing or destabilizing species in the assemblage mosaic of intertidal sediments.  相似文献   

20.
An a posteriori examination of the site of a ship wreck on the outer edge of the Great Barrier Reef revealed an unique, macroalgal-dominated benthic community. The persistence of community structure throughout a year of observation in an environment characterised by intensely grazed microalgae, and in the absence of a measurable wreck-derived influence, provides circumstantial evidence that it represents an alternative stable state. A mechanism for effecting state shifts in coral reef algal communities involves the size-dependent response by grazing organisms to algae in a perturbed environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号