首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The naturally-occurring metabolite of prostaglandin F, 15-keto prostaglandin F (15-keto PGF), elicited rapid and sustained declines in serum progesterone concentrations when administered to rhesus monkeys beginning on day 22 of normal menstrual cycles. Evidence for luteolysis of a more convincing nature was obtained in studies where a single dose of 15-keto PGF was given on day 20 of ovulatory menstrual cycles in which intramuscular injections of hCG were also given on days 18–20; serum progesterone concentrations fell precipitously in monkeys within 24 hours following intramuscular administration of 15-keto PGF. However, corpus luteum function was impaired in only 4 of 11 early pregnant monkeys when 15-keto PGF was administered on days 30 and 31 from the last menses, a time when the ovary is essential for the maintenance of pregnancy. Gestation failed in 2 additional monkeys 32 and 60 days after treatment with 15-keto PGF, but progressed in an apparently normal manner in the remaining 5 animals. Two pregnant monkeys treated with 15-keto PGF on day 42 from the last menstrual period, a time when the ovary is no longer required for gestation, continued their pregnancies uneventfully. Corpus luteum function was not impaired in 9 control monkeys which received injections of vehicle or hCG at appropriate times during the menstrual cycle or pregnancy.  相似文献   

2.
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF) were determined. PGE2 and 6 keto PGF were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196±40 to 370±84 ng/4 hrs/g creatinine and 6 keto PGF1α(184±30 to 326±36), both p<0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF release (370±84 vs. 381±80) PGE2 and (326±50 vs. 315±40) 6 keto PGF, both p>0.2). PHT alone stimulated only 6 keto PGF. PHB and the specific α1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with α1 characteristics.  相似文献   

3.
Whole cell preparations of rat stomach corpus, jejunum, and colon were incubated and the released prostaglandin E2 (PGE2), PGF, PGD2, 15 keto-13,14 dihydro PGE2, and 15 keto-13,14 dihydro PGF were measured by combined gas chromatography-mass spectrometry. All regions made PGD2 and possessed a high capacity for producing 15 keto-13,14 dihydro derivatives of both PGE2 and PGF. Hypertonic sucrose solutions resulted in concentration-dependent increases in prostaglandin release, particularly of PGE2 and its metabolite. It is suggested that PG's may play a role in the local effects of luminal hyperosomolarity on digestive tract functions.  相似文献   

4.
The effects of prostaglandin (PG)F and PGF, 1–15 lactone were compared in luteal phase, non-pregnant and in early pregnant rhesus monkeys. Animals treated with either PG after pretreatment with human chorionic gonadotropin (hCG) had peripheral plasma progesterone concentrations that were not statistically different from those in animals treated with hCG and vehicle. However, menstrual cycle lengths in monkeys treated with PGF, 1–15 lactone were significantly (P <0.02) shorter than those in vehicle treated animals. In the absence of hCG pretreatment, plasma progesterone concentrations were significantly (P <0.008) lower by the second day after the initial treatment with either PGF or PGF, 1–15 lactone than in vehicle treated monkeys. Menstrual cycle lengths in monkeys treated with either PG were significantly (P <0.04) shorter than those in animals treated with vehicle. There were no changes in plasma progesterone concentrations in early pregnant monkeys treated with PGF, and pregnancy was not interrupted. In contrast, plasma progesterone declined and pregnancy was terminated in 5 of 6 early pregnant monkeys treated with PGF, 1–15 lactone. These data indicate that PGF, 1–15 lactone decreases menstrual cycle lengths in non-pregnant rhesus monkeys. More importantly, PGF, 1–15 lactone terminates early pregnancy in the monkey at a dose which is less than an ineffective dose of PGF.  相似文献   

5.
Prostaglandins are well known for their ability to stimulate contraction in gastrointestinal smooth muscle, yet very little information is available on how their activity affects propulsion . Thus, studies were undertaken to determine the effect of various prostaglandins on qastric emptying (GE) and small intestinal transit (SIT) in unanesthetized fasted rats. Rats were treated with intravenous, subcutaneous, or oral PGF2α, PGE2, or 16,16 dimethyl PGE2 at various doses, followed 1 (intravenous), 20 (subcutaneous) or 10 (oral) mins later by intragastric 51Cr oxide in black ink. Forty-five mins later, rats were sacrificed by CO2 asphyxiation, the pylorus clamped, and the gut excised. SIT was expressed as the percent of intestinal length traveled by the most distal portion of ink. GE was expressed as the percent of the 51Cr emptied into the intestines. If GE was affected by prostaglandin treatment, the experiments were repeated with rats pre-implanted with duodenal cannula. This preparation allowed the visual transit marker to be deposited directly into the dueodenum, thus avoiding acceleration or delay of SIT caused by fluctuations in GE. The results of these studies show that: (1) intravenous 16,16 dimethyl PGE2 (5–50 μg/kg), but not PGF2α or PGE2, accelerates GE and delays SIT; (2) oral prostaglandin administration increases SIT; (3) oral 16,16 dimethyl PGE2 delays GE; (4) subcutaneous 16,16 dimethyl PGE2 accelerates, has no effect upon, or delays GE depending upon dose, but accelerates SIT at all doses tested; and (5) subcutaneous PGE2 accelerates SIT while PGF2α does not. Thus, the effect of prostaglandins on GE and SIT depends upon the dosage and route of administration as well as type of prostaglandin used.  相似文献   

6.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 × 10−9M and 2.1 × 10−8M for PGE1 and PGF, respectively. Competition of several natural prostaglandins for the PGE1 and PGF bovine luteal specific binding sites indicates specificity for the 9-keto or 9α-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5,6-cis-double bond as well.Bovine luteal function was affected following treatment of heifers with 25 mg PGF as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contrast, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained on PGF relative binding affinity to the bovine CL can be compared to data obtained independently on PGF induced luteolysis in the bovine, PGF relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

7.
Pregnancies in hamsters may be terminated with 10 μg PGF administered b.i.d. on days 4, 5 and 6 of gestation. Small (250 μg and above) daily injections of progesterone on the same days will reverse this PG effect; in contradistinction, 10 mg of progesterone per day failed to maintain normal pregnancies in hamsters spayed on day 5. Daily administration of 3 mg of progesterone and 1 μg of estrone essentially normalized the gestation; administration of PGF at 10 mg on days 5, 6 and 7 of pregnancy in steroid-maintained rats, resulted in pregnancy termination in all animals, while 1 mg was partly effective. These data demonstrate an extra-ovarian site of action of prostaglandin F on pregnancy in hamsters.  相似文献   

8.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 α (PGF2α) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postesturus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesteron sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uterovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embros. Mating had no effect on mean daily concentrations of PGF2α or the patterns of the natural logarithm (ln) of the invariance of PGF2α. Ovariectomy resulted in higher mean concentrations and ln invariances of PGF2α on day 13 and lower mean concentrations and ln invariances of PGF2α on days 15 and 16. Replacement with progesterone prevented these changes in patters of mean concentrations and ln variances of PGF2α following ovariectomy. It is concluded that progesterone regulates the release of PGF2α from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2α which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

9.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 × 10−9M and 2.1 × 10−8M for PGE1 and PGF, respectively. Competition of several natural prostaglandins for the PGE1 and PGF bovine luteal specific binding sites indicates specificity for the 9-keto or 9α-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5,6-cis-double bond as well.Bovine luteal function was affected following treatment of heifers with 25 mg PGF as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contrast, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF induced luteolysis in the bovine, PGF relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

10.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F (PGF) or 6-keto-prostaglandin F (6-keto-PGF) were added to the culture media with indomethacin. (1) The hatching was inhibited by indomethacin yet the inhibition was reversible. (2) In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. (3) In the groups with indomethacin and PGF, inhibition of hatching was improved in comparison with the group with indomethacin. (4) In the groups with indomethacin and 6-keto-PGF, no improvement was seen. The above results indicated that PGF possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

11.
A radioimmunoassay procedure for the determination of PGE1, PGE2, and PGF2α is presented. The procedure involves the pre-precipitation of each prostaglandin specific antiserum with the precipitating antisera (ARGG), and the use of these antisera mixtures in assaying for PGE1, PGE2, and PGF2α. Applicability of the methods to unextracted plasma, serum and myocardial homogenate has been demonstrated through tests of specificity, recovery, reproducability and parallelism. A mathematical correction for cross-reactivity between PGE1 and PGE2, and their opposing antisera is given. To demonstrate the utility of the methodology in differentiation of experimental variables, prostaglandin concentrations in unincubated serum, incubated serum, and the rate of prostaglandin production in serum of dogs are given.  相似文献   

12.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

13.
The concentration of prostaglandin F (PGF) has been measured in the peripheral plasma of normal rhesus monkeys ( ) during the final third of gestation, and in monkeys treated with dexamethasone or PGF2α after day 145 of pregnancy. Daily administration of PGF2α (10–15 mg/day im) reliably induced abortion within 3–6 days. However, dexamethasone (8 mg/day im from day 145) had no effect on the length of gestation.The concentration of PGF in the femoral venous plasma of untreated or dexamethasone-treated monkeys was highly variable, both in serial samples taken from the same animal and in samples taken from different animals at the same time of gestation. There was no indication of an effect of dexamethasone treatment on the plasma PGF levels, nor did the concentration of PGF increase during late pregnancy before spontaneous parturition. These results show that the myometrium of the pregnant rhesus monkey is highly sensitive to exogenous PGF2α during late gestation. However, a significant increase in the peripheral plasma concentration of PGF prior to the onset of labor was not observed.  相似文献   

14.
Prostaglandins E2 and D2 were both converted to prostaglandin F (9α, 11α) by an enzyme present in sheep blood. Neither the 9β, 11α epimer nor the 9α, 11β epimer was produced from PGE2 or PGD2 respectively. The rate of reduction was measured using isotope dilution (D4 PGF) and multiple-ion detection gas chromatography-mass spectrometry.  相似文献   

15.
Tubal segments of the ascending uterine arteries and of intramyometrial arteries were obtained from 18 women who underwent hysterectomy at various phases of the menstrual cycle. Ring preparations of the vessels were mounted in organ baths and isometric tension was recorded. In extramyometrial arteries (outer diameter 2–3 mm) prostaglandin (PG) F most potently, but also PGE2 caused concentration-related contractions. In contrast, the contractant effects of both PGs on intramyometrial arteries (outer diameter 0.5–0.6 mm) were negligible. Both extra- and intramyometrial vessels were relaxed to a moderate degree (10–25%) by low concentrations of PGF and PGE2. No significant differences between the responses to vasopressin and noradrenaline were found between the vessel preparations. Thus human uterine arteries seem to change their responses to PGF and PGE2 as they enter the myometrium and decrease in diameter, and the results raise doubt about the view that direct vasoconstrictor effects of these PGs contribute to the regulation of myometrial blood flow. Such effects of vasopressin and noradrenaline cannot be excluded.  相似文献   

16.
Prostaglandin (PG)F, E2, D2 and 6-keto-F were determined in human cerebrospinal fluid by a mass spectrometric technique. The samples were obtained from 12 patients with suspected intracranial disease. A 64 fold variation in PG levels was observed. The major PG was 6-keto-F (0.12–15 ng/ml). PGF and PGE2 were present in lower concentrations PGD2 was below the level of detection (0.05 ng/ml) except in one patient with extremely high total levels of PGs.  相似文献   

17.
The conversion of arachidonic acid to prostaglandins (PG's) and thromboxane B2 (TXB2) was investigated in homogenates from fetal and adult bovine and rabbit lungs. Adult bovine lungs were very active in converting arachidonic acid (100 μg/g tissue) to both PGE2 (10.7 μg/g tissue) and TXB2 (6.2 μ/g tissue). Smaller amounts of PGF (0.9 μ/g) and 6-oxoPGF were formed. Homogenates from fetal calf lungs during the third trimester of pregnancy were quite active in converting arachidonic acid to PGE2, but formed very little TXB2, PGF or 6-oxoPGF. Homogenates from rabbit lungs converted arachidonic acid (100 μg/g) mainly to PGE2, both before and after birth. The amount of PGE2 formed increased during gestation to a maximum of about 6 μg/g tissue at 28 days of gestation. It then decreased to a minimum (1.5 μg/g) which was observed 8 days after birth, followed by an increase to about 4 μg/g in older rabbits.  相似文献   

18.
Antibodies directed toward PGF were prepared in rabbits. The serologic specificity of the immune reaction was determined by inhibition of sodium borohydride-reduced (3H) PGE2 anti-PGF binding by several prostaglandins. The antibodies to PGF recognize the β-hydroxyl configuration in the cyclopentane ring of PGF. With the use of both anti-PGF and anti-PGF, the product of PGE2 reduction by 9-ketoreductase purified from chicken heart was identified as PGF. Guinea pig liver and kidney homogenates were examined for PGE 9-ketoreductase activity. Although enzyme activity was present, no evidence of PGF production was found.  相似文献   

19.
When ovine large luteal cells are placed in culture and exposed to PGF, there is a rapid and sustained increase in the concentration of free intracellular calcium which is believed to play a major role in the luteolytic and cytotoxic effects of PGF. Since administration of exogenous PGE2 can prevent spontaneous and PGF-induced luteolysis in vivo, and the cytotoxic effects of PGF on large luteal cells in vitro, the objective of this study was to determine if one mechanism by which PGE2 acts is to attenuate increases in free intracellular calcium induced by PGF. At concentrations of 10 nM or greater, PGF caused a significant and sustained increase in free intracellular calcium in large luteal cells. Similarly, PGE2 also induced increases in free intracellular calcium but required doses 20-fold greater than PGF. When PGE2 (1, 10 or 100 nM) was incubated with PGF (100 nM) increases in free intracellular calcium induced by PGF were attenuated (P<0.05) when measured 5 min, but not at 30 min, after initiation of treatment. The observed decrease in the concentration of free intracellular calcium at 5 min in response to PGF was the result of fewer cells responding to PGF. In addition, the concentrations of free intracellular calcium attained in the cells that did respond was reduced 25% compared to cells treated with PGF alone. Thus, part of the luteal protective actions of PGE2 appears to involve an inhibition of the early (5 min) increase in free intracellular calcium induced by PGF.  相似文献   

20.
In these experiments we have examined the effects of PGE1, PGE2, PGF and PGF on synovial perfusion in the normal canine synovial microcirculation. The effects of the drugs on synovial perfusion were determined indirectly from the changes produced in the rate of clearance of 133Xenon from the joint by their intra-articular injection. Prostaglandins PGE1 and PGE2 were found to be strongly vasodilator with PGE1 being the more active. PGF appeared to have little or no vasoactive properties in doses up to 1 ugm. (2.8 × 10−5M) in our I preparation while PGF was vasodilator at this high dosage only. Neither SC19920 nor diphloretin phosphate antagonised the effects of PGE1 in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号