首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract The microbiota in the mouth is subjected to substrate limitations. In this study we have evaluated the role of competition for carbon and energy substrates on the proportions of 2 microbial species in a simplified plaque ecosystem in gnotobiotic rats. Germ-free rats were inoculated with a combination of Streptococcus sanguis and Streptococcus mutans , or with a combination of Streptococcus milleri and S. mutans . The available carbon and energy sources were varied through the host's diet. 3 Experimental diets were tested: (i) a basal diet low in soluble carbohydrates; (ii) an arginine-supplemented diet; (iii) a sucrose-supplemented diet. Arginine is used for growth by S. sanguis and S. milleri , but not by S. mutans . Sucrose is rapidly fermented by all 3 species.
The total number of viable organisms on the dentition increased when arginine or sucrose were supplied in the diet. With the arginine-supplemented diet, S. sanguis and S. milleri increased while S. mutans decreased. With the sucrose-supplemented diet, S. mutans increased while S. sanguis and S. milleri decreased. These results were explained by assuming that the organism with the highest growth rate on the supplementary substrate competes most favourably. Changes in the environmental pH, due to breakdown of sucrose and arginine, might also have affected the competition between the streptococci. In addition, production of extracellular glucans from sucrose could be a competitive advantage for S. mutans .  相似文献   

3.
Nidus Vespae (honeycomb) is a kind of traditional Chinese medicine that has been demonstrated to inhibit the growth and acid-production of oral cariogenic bacteria. Subsequent studies showed that the chloroform/methanol (Chl/MeOH) chemical extraction of Nidus Vespae was the most effective inhibitor of growth and acidogenicity of Streptococcus mutans. In this study, we isolated the chemical compounds of the Nidus Vespae Chl/MeOH extraction, tested their antimicrobial activity against six cariogenic bacteria and further evaluated the acid inhibition properties, anti-F-ATPase activity and anti-LDH activity against S. mutans. The isolated flavonoids, quercetin and kaempferol, inhibited the growth of bacteria (S. mutans, Streptococcus sobrinus, Streptococcus sanguis, Actinomyces viscosus, Actinomyces naeslundii and Lactobacillus rhamnosus) with minimum inhibitory concentrations (MICs) ranging from 1 to 4 mg/ml and minimum bactericidal concentrations (MBCs) from 4 to 16 mg/ml. In addition, quercetin and kaempferol at sub-MIC levels significantly inhibited acidogenicity and acidurity of S. mutans cells. Treated with the test agents, the F-ATPase activity was reduced by 47.37% with 1mg/ml quercetin and by 49.66% with 0.5mg/ml kaempferol. The results showed that quercetin and kaempferol contained in Chl/MeOH extraction presented remarkably biological activity, suggesting that Nidus Vespae might be useful as a potential preventive and therapeutic agent in dental caries.  相似文献   

4.
Strains of Streptococcus mutans (biotype 1), Streptococcus sanguis, and Streptococcus mitior have been grown in mixed continuous culture in a semidefined medium under glucose limitation at a growth rate of D = 0.1 h-1. The effect of varying the environmental pH on the proportions of the different populations within the community has been determined. Initially the populations were allowed to reach steady state at pH 7.0 when S. sanguis was dominant with S. mutans and "S. mitior" maintaining similar populations. The medium pH was then lowered in steps of 0.5 pH units from pH 7.0 to 4.5, and the community was grown at each step for at least 15 generations. Viable counts of each species were made at 24-h intervals. The population ratios established at pH 7.0 remained relatively stable when the environmental pH was set at pH 6.5. However, after the medium pH was lowered to 6.0 (days 18-27), the population of S. mutans began to increase and the S. mitior population began to decline. A further change was seen at pH 5.5 (days 27-34) when S. mutans became dominant, S. sanguis declined, and S. mitior was not detectable. At pH 4.5, both S. mutans and S. sanguis were reduced in numbers, but survived until the experimental run was terminated (44 days). Samples of culture fluid were taken throughout the experiment and analyzed for the presence of the acid products of glucose metabolism. The amounts of lactic acid produced by the community increased as the environmental pH was lowered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Genetic exchange between oral streptococci during mixed growth   总被引:6,自引:0,他引:6  
To determine whether oral streptococci might exchange genetic information in the oral cavity, paired transformable strains of Streptococcus mutans, Streptococcus sanguis and Streptococcus milleri were growth together. Chromosomal and plasmid-borne antibiotic resistance markers could be readily transferred from S. mutans GS-5 to S. milleri NCTC 10707 or S. sanguis Challis during mixed growth. However, no exchange from the latter two organisms to strain GS-5 could be detected under these conditions. The transfer of genetic information from S. sanguis to S. milleri was also observed.  相似文献   

6.
pH activity profiles and inhibitor sensitivities were compared for membrane ATPases isolated from three oral lactic acid bacteria, Lactobacillus casei ATCC 4646, Streptococcus mutans GS-5, and Streptococcus sanguis NCTC 10904, with, respectively, high, moderate, and low levels of acid tolerance. Membranes containing F1F0 ATPases were isolated by means of salt lysis of cells treated with muralytic enzymes. Membrane-free F1F0 complexes were then isolated from membranes by detergent extraction with Triton X-100 or octylglucoside. Finally, F1 complexes free of the proton-conducting F0 sector were obtained by washing membranes with buffers of low ionic strength. The pH activity profiles of the membrane-associated enzymes reflected the general acid tolerances of the organisms from which they were isolated; for example, pH optima were approximately 5.5, 6.0, and 7.0, respectively, for enzymes from L. casei, S. mutans, and S. sanguis. Roughly similar profiles were found for membrane-free F1F0 complexes, which were stabilized by phospholipids against loss of activity during storage. However, profiles for F1 enzymes were distinctly narrower, indicating that association with F0 and possibly other membrane components enhanced tolerance to both acid and alkaline media. All of the enzymes were found to have similar sensitivities to Al-F complexes, but only F1F0 enzymes were highly sensitive to dicyclohexylcarbodiimide. The procedures described for isolation of membrane-free F1F0 forms of the enzymes from oral lactic acid bacteria will be of use in future studies of the characteristics of the enzymes, especially in studies with liposomes.  相似文献   

7.
pH activity profiles and inhibitor sensitivities were compared for membrane ATPases isolated from three oral lactic acid bacteria, Lactobacillus casei ATCC 4646, Streptococcus mutans GS-5, and Streptococcus sanguis NCTC 10904, with, respectively, high, moderate, and low levels of acid tolerance. Membranes containing F1F0 ATPases were isolated by means of salt lysis of cells treated with muralytic enzymes. Membrane-free F1F0 complexes were then isolated from membranes by detergent extraction with Triton X-100 or octylglucoside. Finally, F1 complexes free of the proton-conducting F0 sector were obtained by washing membranes with buffers of low ionic strength. The pH activity profiles of the membrane-associated enzymes reflected the general acid tolerances of the organisms from which they were isolated; for example, pH optima were approximately 5.5, 6.0, and 7.0, respectively, for enzymes from L. casei, S. mutans, and S. sanguis. Roughly similar profiles were found for membrane-free F1F0 complexes, which were stabilized by phospholipids against loss of activity during storage. However, profiles for F1 enzymes were distinctly narrower, indicating that association with F0 and possibly other membrane components enhanced tolerance to both acid and alkaline media. All of the enzymes were found to have similar sensitivities to Al-F complexes, but only F1F0 enzymes were highly sensitive to dicyclohexylcarbodiimide. The procedures described for isolation of membrane-free F1F0 forms of the enzymes from oral lactic acid bacteria will be of use in future studies of the characteristics of the enzymes, especially in studies with liposomes.  相似文献   

8.
A shuttle vector that can replicate in both Streptococcus spp. and Escherichia coli has been constructed by joining the E. coli plasmid pACYC184 (chloramphenicol and tetracycline resistance) to the streptococcal plasmid pGB305 (erythromycin resistance). The resulting chimeric plasmid is designated pSA3 (chloramphenicol, erythromycin, and tetracycline resistance) and has seven unique restriction sites: EcoRI, EcoRV, BamHI, SalI, XbaI, NruI, and SphI. Molecular cloning into the EcoRI or EcoRV site results in inactivation of chloramphenicol resistance, and cloning into the BamHI, SalI, or SphI site results in inactivation of tetracycline resistance in E. coli. pSA3 was transformed and was stable in Streptococcus sanguis and Streptococcus mutans in the presence of erythromycin. We have used pSA3 to construct a library of the S. mutans GS5 genome in E. coli, and expression of surface antigens in this heterologous host has been confirmed with S. mutans antiserum. A previously cloned determinant that specifies streptokinase was subcloned into pSA3, and this recombinant plasmid was stable in the presence of a selective pressure and expressed streptokinase activity in E. coli, S. sanguis (Challis), and S. mutans.  相似文献   

9.
Genetic relationships among the oral streptococci.   总被引:12,自引:0,他引:12       下载免费PDF全文
Genetic relationships and species limits among the oral streptococci were determined by an analysis of electrophoretically demonstrable variation in 16 metabolic enzymes. Fifty isolates represented 40 electrophoretic types, among which the mean genetic diversity per locus was 0.857. Mannitol-1-phosphate dehydrogenase was not detected in isolates of the sanguis species complex, and glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were absent in species of the mutans complex. Clustering from a matrix of Gower's coefficient of genetic similarity placed the 40 electrophoretic types in 10 well-defined groups corresponding to the Streptococcus species S. mutans, S. sobrinus, S. cricetus, S. rattus, S. ferus, S. oralis (mitior), two distinct assemblages of S. sanguis strains, and two subdivisions of "S. milleri." The assignments of isolates to these groups were the same as those indicated by DNA hybridization experiments, and the coefficient of correlation between genetic distance estimated by multilocus enzyme electrophoresis and genetic similarity indexed by DNA hybridization was -0.897 (P less than 0.001) for 50 pairwise combinations of isolates. S. ferus, which is widely believed to be a member of the mutans complex, was shown to be phylogenetically closer to species of the sanguis complex.  相似文献   

10.
Adaptive acid tolerance response of Streptococcus sobrinus   总被引:1,自引:0,他引:1  
Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chemostat cultures. Compared with cells grown at neutral pH, S. sobrinus cells grown at pH 5.0 showed an increased resistance to acid killing and were able to drive down the pH through glycolysis to lower values. Unlike what is found for S. mutans, the enhanced acid tolerance and glycolytic capacities of acid-adapted S. sobrinus were not due to increased F-ATPase activities. Interestingly though, S. sobrinus cells grown at pH 5.0 had twofold more glucose phosphoenolpyruvate:sugar phosphotransferase system (PTS) activity than cells grown at pH 7.0. In contrast, glucose PTS activity was actually higher in S. mutans grown at pH 7.0 than in cells grown at pH 5.0. Silver staining of two-dimensional gels of whole-cell lysates of S. sobrinus 6715 revealed that at least 9 proteins were up-regulated and 22 proteins were down-regulated in pH 5.0-grown cells compared with cells grown at pH 7.0. Our results demonstrate that S. sobrinus is capable of mounting an ATR but that there are critical differences between the mechanisms of acid adaptation used by S. sobrinus and S. mutans.  相似文献   

11.
The oral microbe Streptococcus mutans uses adaptive mechanisms to withstand the fluctuating pH levels in its natural environment. The regulation of protein synthesis is part of the mechanism of acid adaptation and tolerance in S. mutans. Here, we demonstrate that the organism's acid-inducible protein repertoire includes an AP endonuclease activity. This abasic site-specific endonuclease activity is present at greater levels in cells grown at low pH than in cells grown at pH 7, and is apparently independent of the RecA protein. Experiments using tetrahydrofuran or alpha-deoxyadenosine-containing substrates indicate that the activity induced at low pH may be similar to the activity of exonuclease III from E. coli. Acid-adapted S. mutans also shows an increased survival rate after exposure to near-UV radiation in both the wild type and a recA strain. Far-UV radiation resistance is observed in the wild type only. The endonuclease activity was purified approximately 500-fold from an S. mutans recA mutant strain grown at pH 5. Initial characterization revealed a 3' to 5' exonuclease activity, and showed additional functional similarities to DNA repair enzymes from other organisms.  相似文献   

12.
We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.  相似文献   

13.
Zymographic analysis was performed to know the bacteriolytic enzyme profiles of 4% SDS extracts of oral streptococci, Streptococcus mutans, S. sobrinus, S. sanguis, S. mitis and S. salivarius. We investigated the five strains in each species and found that the profile was very similar among strains of the same species except for S. salivarius(the profile was classified into two types). On the other hand, the profile was considerably different among species. Two major bacteriolytic enzymes of S. mutans showing molecular mass of 80 and 100 kDa were found using SDS-boiled S. mutans or S. sobrinus cells as substrate. These bacteriolytic activities were less apparent in the gel containing S. mitis or S. salivarius, and also not detectable in the gel containing S. sanguis. S. sobrinus extract showed only one bacteriolytic band (78 kDa) as strong activity using S. sobrinus cells as substrate. S. sanguis extract showed no bacteriolytic bands using any streptococcal cells. Extracts of either S. mitis or S. salivarius showed weak activity by using respective strains as substrate.  相似文献   

14.
The expression of Streptococcus mutans mutant glucosyltransferase-I enzymes in S. sanguis and S. milleri suggests that cell-associated glucosyltransferase activity is dependent upon both glucan synthesis and glucan binding by the carboxyl-terminal repeating units of the enzyme. Mutant enzymes lacking these repeating units were only present in the extracellular fluids of these transformed streptococcal strains.  相似文献   

15.
Lac+ plasmid DNA from Streptococcus cremoris H2 was subcloned with an Escherichia coli vector on a 3.5-kilobase-pair PstI-AvaI fragment. Genetic analysis of the cloned DNA was possible because linear Lac+ DNA fragments were productive in the S. sanguis transformation system. Complementation of S. sanguis Lac-mutants showed that the 3.5-kilobase-pair fragment included the structural gene for 6-phospho-beta-D-galactosidase and either enzyme II-lac or factor III-lac of the lactose-specific phosphoenolpyruvate-dependent phosphotransferase system. Expression of the S. cremoris-like 40,000-dalton 6-phospho-beta-D-galactosidase in S. sanguis Lac+ transformants, rather than the 52,000-dalton wild-type S. sanguis enzyme, demonstrated the occurrence of gene replacement and not gene repair. The evidence supports chromosomal integration as the mechanism by which S. sanguis Lac- recipients are converted to a Lac+ phenotype after transformation with Lac+ DNA. Southern blot data suggest that the Lac+ DNA does not reside on a transposon, but that integration always occurs within a specific HincII fragment of the recipient chromosome. Hybridization experiments demonstrate homology between the S. cremoris Lac+ DNA and cellular DNA from Lac+ strains of Streptococcus lactis, S. mutans, S. faecalis, and S. sanguis.  相似文献   

16.
Abstract Oral Streptococcus species experience carbohydrate limitation interrupted by periods of substrate excess following food intake by the host. To investigate the competitiveness of various streptococcal species under fluctuating carbohydrate supply, 2-membered chemostat cultures were run.
Under continuous limitation of glucose or sucrose, all 6 Streptococcus mutans test strains were outcompeted by Streptococcus sanguis P4A7 or Streptococcus milleri B448. This indicated that S. mutans had a lower affinity for glucose and sucrose than S. sanguis and S. milleri .
Mixed cultures were then subjected to hourly pulses with glucose. Under these conditions S. mutans Ny344 competed successfully with S. milleri B448, but still lost the competition against S. sanguis P4A7. The streptococci responded to pulses by taking up glucose at the maximum rate almost instantaneously. S. sanguis P4A7 had the highest rate of glucose uptake while the q max value of S. mutans Ny344 was higher than that of S. milleri B448. This suggested a causal relationship between q max and competitiveness.  相似文献   

17.
A bacterial strain, which assimilated dextran and water-insoluble glucan produced by Streptococcus mutans, was isolated from soil. The bacterium produced and secreted potent dextranase activity, which was identified as Arthrobacter sp. and named CB-8. The dextranase was purified and some enzymatic properties were characterized. The enzyme efficiently decomposed the water-insoluble glucan as well as dextran. A gene library from the bacteria was constructed with Escherichia coli, using plasmid pUC19, and clones producing dextranase activity were selected. Based on the result of nucleotide sequencing analysis, it was deduced that the dextranase was synthesized in CB-8 cells as a polypeptide precursor consisting of 640 amino acid residues, including 49 N-terminal amino acid residues which could be regarded as a signal peptide. In the E. coli transformant, the dextranase activity was detected mostly in the periplasmic space. The gene for the dextranase was introduced into Streptococcus sanguis, using an E. coli-S. sanguis shuttle vector that contained the promoter sequence of a gene for glucosyltransferase derived from a strain of S. mutans. The active dextranase was also expressed and accumulated in S. sanguis cells.  相似文献   

18.
Caries-causing oral bacteria such as Streptococcus mutans are protected by the actions of F-ATPases against acid damage in dental plaque acidified by glycolytic acid production or ingestion of acids foods and beverages. Catabolites such as glucose and sucrose were found to enhance the protection of S. mutans and also other oral lactic-acid bacteria against acid killing at lethal pH values as low as 2.5. Protection involved glycolysis with the production of lactate and ATP, which is a substrate for F-ATPases. ATP could also be produced by starved cells apparently through synthase activity of the F-ATPase associated with acid decline. Fluoride and the organic weak-acid indomethacin acted to diminish this protection, as did F-ATPase inhibitors such as dicyclohexylcarbodi-imide. Protection against acid killing involving catabolism and synthase activity is likely to be important for plaque cariogenicity.  相似文献   

19.
A chromosomal tetracycline resistance (Tcr) determinant previously cloned from Streptococcus mutans into Streptococcus sanguis (Tobian and Macrina, J. Bacteriol. 152:215-222, 1982) was characterized by using restriction endonuclease mapping, deletion analysis, and Southern blot hybridization. Deletion analysis allowed localization of the Tcr determinant to a 2.8-kilobase region of the originally cloned 10.4-kilobase sequence. This cloned determinant hybridized to a representative of the tetM class of streptococcal Tcr determinants but not to representatives of the tetL and tetN classes and, like other tetM determinants, mediated high-level resistance to tetracycline and low-level resistance to minocycline. A portion (approximately 3 kilobases) of the isolated streptococcal fragment was subcloned into Escherichia coli, where it conferred resistance to tetracycline and minocycline. Two proteins with apparent molecular weights of 33,000 and 35,000, encoded by the S. mutans DNA, were synthesized in E. coli minicells. Insertion of DNA into a unique SstI site of the cloned S. mutans fragment resulted in inactivation of Tcr expression in E. coli and S. sanguis, as well as loss of production of both the 33,000- and 35,000-dalton proteins in E. coli minicells. Incubation of minicells in subinhibitory concentrations of tetracycline did not result in changes in the levels of synthesis of either protein. Our data suggest that at least one of these proteins is involved in the expression of Tcr.  相似文献   

20.
Previously, we described in Streptococcus mutans strain NG8 a 5-gene operon (sat) that includes ffh, the bacterial homologue of the eukaryotic signal recognition particle (SRP) protein, SR54. A mutation in ffh resulted in acid sensitivity but not loss of viability. In the present study, chemostat-grown cells of the ffh mutant were shown to possess only 26% and 39% of the parental membrane F-ATPase activity and 55% and 75% of parental glucose-phosphotransferase (PTS) activity when pH-7 and pH-5-grown cells, respectively, were assayed. Two-dimensional-gel electrophoretic analyses revealed significant differences in protein profiles between parent and ffh-mutant strains at both pH 5 and pH 7. It appears that the loss of active SRP (Ffh) function, while not lethal, results in substantial alterations in cellular physiology that includes acid tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号