首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of activated carbon from apricot stone with H2SO4 activation and its ability to remove a basic dye, astrazon yellow 7GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6 g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 °C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.  相似文献   

2.
Biodegradation of phenol by Pseudomonas putida (NICM 2174), a potential biodegradent of phenol has been investigated for its degrading potential under different conditions. Pseudomonas putida (NICM 2174) cells immobilized in chitosan were used to degrade phenol. Adsorption of phenol by the chitosan immobilized matrix played an important role in reducing the toxicity of phenol. In the present work, results of the batch equilibrium adsorption of phenol on chitosan from its aqueous solution at different particle sizes (0.177 mm, 0.384 mm, 1.651 mm) and initial concentration of phenol (20, 40, 60, 80, 100, 120, 140, 160, 180, 200 mg/l) have been reported. The adsorption isotherms are described by Langmuir, Freundlich and Redlich-Peterson types of equations. These indicate favourable adsorption with chitosan. From the adsorption isotherms, the adsorption capacity, energy of adsorption, number of layers and the rate constants were evaluated. In batch kinetic studies the factors affecting the rate of biodegradation of phenol, were initial phenol concentration (0.100 g/l, 0.200 g/l, 0.300 g/l), temperature (30v°C, 34v°C, 38v°C) and pH (7.0, 8.0, 9.0). Biodegradation kinetic data indicated the applicability of Lagergren equation. The process followed first order rate kinetics. The biodegradation data generally fit the Lagergren equation and the intraparticle diffusion rate equation from which adsorption rate constants, diffusion rate constants and diffusion coefficients were determined. Intraparticle diffusion was found to be the rate-limiting step. Cell growth contributed significantly to phenol removal rates especially when the degradation medium was supplemented with a utilizable carbon source.  相似文献   

3.
The adsorption of methyl parathion from aqueous solutions by the low-cost and abundant adsorbent mango kernel was studied in a batch adsorption system. The adsorption was studied as a function of pH, contact time, initial pesticide concentration, adsorbent dose, and temperature. A maximum adsorption of 98% ± 1% was achieved. Physicochemical characterization of the adsorbent was carried out by EDXRF, BET, and CHNS analysis. Freundlich, Langmuir, and Dubinin-Radushkevich isotherms were employed to evaluate the adsorption capacity of the adsorbent. Lagergren, Morris-Weber, and Reichenberg equations were employed to study the kinetics of the adsorption process. Thermodynamic parameters Δ H, Δ S, and Δ G were computed. The developed adsorption method was applied to real environmental samples.  相似文献   

4.
J Zhao  DQ Lin  SJ Yao 《Carbohydrate polymers》2012,90(4):1764-1770
The adsorption properties toward rutin of a cyclodextrin polymer adsorbent CroCD-TuC 3 have been studied. The adsorption capacity is reduced as temperature and pH of solution rises, but increases with the increase of solvent polarity. Compared with Sephadex? G-15 dextran gel beads, CroCD-TuC 3 shows dramatically higher isosteric enthalpy due to a significant contribution of rutin/β-cyclodextrin inclusion complex formation in CroCD-TuC 3 skeleton. A highlight in our study is that the pore diffusion model has been employed to describe the mass transfer inside the adsorbent pores. It reveals that the diffusion inside the pores is the rate-restricting step in the whole adsorption process. The effective pore diffusivity of rutin in CroCD-TuC 3 calculated is much lower than the diffusivity in diluted solution. The pore diffusion model is an available tool to investigate the profile of mass transfer inside the pores, and provides an effective method to describe adsorption kinetics.  相似文献   

5.
Heavy metals in the soil and ground water have endangered our environment and human bodies by direct or indirect pathways. Currently, bioremediation is a developing process that offers the possibility to destroy various contaminants using natural biological activity. Biopolymers are industrially attractive because of their capability of lowering transition metal ion concentrations to parts per billion, they are widely available, and they are environmentally safe. This paper deals with the preparation of an ethylamine-modified biopolymer (chitosan) and carbon from biowaste (rice husk) composite beads (EAM-CCRCB) for metal ion removal. The prepared adsorbent was used for the adsorption of hexavalent chromium ions from aqueous solutions. The activation and surface properties of the adsorbent were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analyses. The effect of process variables such as initial metal ion concentration, adsorbent dosage, and pH of the solution on the performance of percentage removal and adsorption capacity were studied. Various isotherm and kinetic models were fitted with experimental data to describe the solute interaction and nature of adsorption with the adsorbent through batch studies. Mass thermodynamic parameters were determined. Regeneration studies were attempted to check the stability and activity of the adsorbent.  相似文献   

6.
This paper describes modification of a natural adsorbent with Fenton reagent and determines the removal of Cd(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR analysis after the modification of pine bark. The effect of Fe2+/H2O2 ratio, ORP, pH, and contact time were determined. Different adsorption isotherms were also obtained using concentrations of Cd(II) ions ranging from 0.1 to 100 mg L(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The paper discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) on modified bark, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiency obtained was 97% at pH 7 and with a 90-min contact time (for 35 mg L(-1) initial concentration and a 2.5 g L(-1) solid-to-liquid ratio).  相似文献   

7.
The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.  相似文献   

8.
Adsorption kinetic and equilibrium of a basic dye (Astrazon Yellow 7GL) from aqueous solutions at various initial dye concentration (50-300 mg/l), pH (4-10), adsorbent dosage (2-8 g/l), particle size (354-846 microm) and temperature (30-50 degrees C) on wheat bran were studied in a batch mode operation. The result showed that the amount adsorbed of the dye increased with increasing initial dye concentration and contact time, whereas particle size and pH had no significant affect on the amount of dye adsorbed by the adsorbent. A comparison of kinetic models on the overall adsorption rate showed that dye/adsorbent system was best described by the pseudo second-order rate model. The removal rate was also dependent on both external mass transfer and intra-particle diffusion. The low value of the intraparticle diffusivity, 10(-11) cm2/s, indicated the significant influence of intraparticle diffusion on the kinetic control. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 69.06 mg/g for at pH 5.6, 303 K for the particle size of 354 microm. The experimental data yielded excellent fits with Langmuir and Tempkin isotherm equations. Different thermodynamic parameters showed that the reaction was spontaneous and endothermic in nature.  相似文献   

9.
The adsorption of copper(II) ions on to dehydrated wheat bran (DWB), a by-product of the flour process, was investigated as a function of initial pH, temperature, initial metal ion concentration and adsorbent dosage. The optimum adsorption conditions were initial pH 5.0, initial copper concentration 100 mg l−1, temperature 60 °C and adsorbent dosage 0.1 g. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 51.5 mg g−1 of copper(II) ions on DWB. The observation of an increase in adsorption with increasing temperature leads to the result that the adsorption of copper(II) ions on DWB is endothermic in nature. The thermodynamic parameters such as enthalpy, free energy and entropy changes were calculated and these values show that the copper(II)-DWB adsorption process was favoured at high temperatures.  相似文献   

10.
Methylene blue (MB), a common toxic dye, is largely discharged from dyeing processes for acrylic, nylon, silk, and woolen fabrics in textile industries. While application of conventional removal processes like chemical precipitation, ion exchange, commercial activated carbon adsorption, etc often become cost-prohibitive, the adsorption of MB by abundantly available green pea peel (GPP: Pisum sativum) derived and acid-treated carbon (GPP-AC) has proved to be a cost-attractive option in the present study. The physicochemical and morphological characteristics of GPP-AC were examined with the help of XRD, BET surface area, SEM, and Fourier transform infrared spectrophotometry ((FT-IR) analysis. The influences of such adsorption parameters as initial dye concentration, pH, contact time, adsorbent dosage, agitation speed, particle size, and temperature were evaluated and optimized. The equilibrium contact time for maximum adsorption of MB on to GPPAC was found to be 7 h. The equilibrium data of the adsorption process were modeled by using the Langmuir, Freundlich, Temkin, and Dubinin-Raduskevich (D-R) isotherms. However, the adsorption equilibrium data were best described by the Langmuir Isotherm model, with a maximum adsorption capacity of 163.94 mg MB/g GPPAC at 30°C.  相似文献   

11.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

12.
Density functional theory (DFT) calculations performed at the PBE/DZP level using the DFT-D2 method were utilized to investigate the adsorption of phenol on pristine activated carbon (AC) and on activated carbon functionalized with OH, CHO, or COOH groups. Over the pristine AC, the phenol molecule undergoes weak physical adsorption due to van der Waals interactions between the aromatic part of the phenol and the basal planes of the AC. Among the three functional groups used to functionalize the AC, the carboxylic group was found to interact most strongly with the hydroxyl group of phenol. These results suggest that functionalized AC-COOH has great potential for use in environmental applications as an adsorbent of phenol molecules in aqueous phases.  相似文献   

13.
Waste sugar beet pulp has been used as adsorbent for the removal of a hazardous cationic dye, Basic violet 16, from its aqueous solution. Adsorption of the dye was studied as function of time, pH of the solution, dosage of the adsorbent, sieve size of the particles, concentration of the dye, and temperature. The initial pH of the dye solution did not affect the chemistry of the dye molecule and the surface of beet pulp. Langmuir and Freundlich adsorption isotherms were successfully employed, and on the basis of these models, the thermodynamic parameters were evaluated. Adsorption of Basic violet 16 on beet pulp was found to be an exothermic reaction. Time contact studies showed that more than 80% adsorption of the dye is achieved in less than 1 h. Kinetics investigations confirmed both pseudo-first-order and pseudo-second-order behaviors; on the other hand, it shows that the intraparticle diffusion step is not the only rate-controlling step in all concentrations.  相似文献   

14.
Rigid adsorbents have advantages over soft gel media for downstream processing of proteins. The adsorption of bovine serum albumin (BSA) has been investigated on a rigid adsorbent based on a wide-pore, hydrophilically coated, silica-gel matrix. The effects of surface chemistry (weak anion exchanger and hydrophobic interaction chromatography) and particle size have been studied on the physical properties of the adsorbent and on the adsorption equilibria and adsorption kinetics. The rates of adsorption of BSA have been measured in a stirred cell and are found to be satisfactorily described by a two-step theoretical model, in which the mass transfer involves a pore diffusion resistance and an extra-particle film resistance. On the anion exchanger, the effective pore diffusivity decreases substantially with increasing protein concentration, approximately halving as the initial concentration rises from 0.7 to 2g/l. In the hydrophobic interaction chromatography medium, the pore diffusivity is less sensitive to protein concentration and is also reduced by a factor of about 4 by aggregation of the protein. Effective pore diffusivities with the "wide-pore" silica adsorbents in anion-exchange form are 36-94 times lower than the diffusivity in free solution and are comparable with the lower of the wide range of values published for soft gels.  相似文献   

15.
The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g?1, respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.  相似文献   

16.
Liu M  Huang J  Deng Y 《Bioresource technology》2007,98(5):1144-1148
An investigation was conducted regarding the adsorption and desorption of L-arginine from aqueous solutions with a new spherical cellulose adsorbent containing the sulfonic group. The adsorption of L-arginine on the adsorbent was time, pH, initial concentration of L-arginine and temperature dependent. The adsorption process followed the Langmuir adsorption isotherm, and was endothermic (DeltaH =24.66 KJ/mol). Almost 100% L-arginine adsorbed on the adsorbent could be recovered with a 2.0 mol/L NH4OH or 2.0 mol/L NH4Cl aqueous solution. After 25 and 40 cycles of adsorption and desorption, the decrease in adsorption capacity reached to 4.9% and 20.3%, respectively.  相似文献   

17.
The applicability of dye-ligands attached to an expanded bed chromatography quartz base matrix (Streamline™) for the affinity bioseparation of rabbit immunoglobulin G (IgG) was investigated. Reactive Green 5 (RG-5) immobilized onto adsorbent was selected for capturing of rabbit-IgG due to its higher binding capacity compared to other dye-ligands possessing similar ligand density. Adsorption parameters such as pH, temperature, ionic strength and initial rabbit-IgG concentration were optimized for the adsorption of rabbit-IgG on the RG-5-immobilized adsorbent. The highest rabbit-IgG adsorption was recorded in pH 7.0, while the maximum binding capacity for BSA was achieved at pH 4.0. The adsorption of rabbit-IgG on RG-5-immobilized adsorbent was declined as the increase of ionic strength. There is no significant influence of temperature against adsorption efficiency of RG-5-immobilized adsorbent for rabbit-IgG. The adsorption phenomenon of rabbit-IgG on RG-5-immobilized adsorbent appeared to follow the Langmuir–Freundlich adsorption isotherm model. The theoretically maximum binding capacity (qm) of RG-5-immobilized adsorbent estimated from this isotherm was 49.3 mg ml−1, which is very close to that obtained experimentally (49.0 mg ml−1). About 50% of bound BSA on RG-5-immobilized adsorbent in binary adsorption system was removed with washing buffer containing 1 M NaCl.  相似文献   

18.
The batch and column kinetics of methylene blue and red basic 22 adsorption on mild acid-hydrolysed beech sawdust were investigated, using untreated beech sawdust as control, in order to explore its potential use as a low cost adsorbent for wastewater dye removal. The adsorption capacities, estimated according to Freundlich's model, and the adsorption capacity coefficient values, determined using the Bohart and Adams' bed depth service model, indicated that prehydrolysis enhances the adsorption properties of the original material. This enhancement can possibly be attributed to (a) the removal of the hemicelluloses during sulphuric acid treatment, resulting in the 'opening' of the lignocellulosic matrix's structure and the increasing of the BET surface area and (b) the activation of the material's surface owing to an increase in the number of dye binding sites.  相似文献   

19.
Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as an adsorbent for removal of basic dyes (methylene blue – MB) from aqueous solutions. The adsorbent was prepared by microwave treatment, providing a significant reduction in processing time coupled to an increase in adsorption capacity in comparison to conventional carbonization in a muffle furnace. Batch adsorption tests were performed at 25 °C and the effects of particle size, contact time, adsorbent dosage and initial solution pH were investigated. Adsorption kinetics was better described by a second-order model. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Tempkin adsorption models, with Langmuir providing the best fit. The results presented in this study show that microwave activation presents great potential as an alternative method in the production of adsorbents.  相似文献   

20.
Suresh Gupta  B.V. Babu   《Bioresource technology》2009,100(23):5633-5640
Continuous adsorption experiments were performed in a fixed-bed adsorption column to evaluate the performance of low-cost adsorbent (sawdust) developed for the removal of Cr(VI) from aqueous solutions. The effects of influencing parameters such as flow rate, mass of adsorbent, initial Cr(VI) concentration were studied and the corresponding breakthrough curves were obtained. The fixed-bed adsorption process parameters such as breakthrough time, total percentage removal of Cr(VI), adsorption exhaustion rate and fraction of unused bed-length were obtained. A mathematical model for fixed-bed adsorption column was proposed by incorporating the effect of velocity variation along the bed-length in the existing model. Pore and solid diffusion models were used to describe the intra-particle mechanism for Cr(VI) adsorption. The proposed mathematical model was validated with the literature data and the experimental data obtained in the present study and the model was found to be good for explaining the behavior of breakthrough curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号