首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The hyperglycemia-enhanced flux through the hexosamine biosynthetic pathway (HBP) has been implicated in the up-regulated gene expression of transforming growth factor-beta1 (TGF-beta1) in mesangial cells, thus leading to mesangial matrix expansion and diabetic glomerulosclerosis. Since the -1013 to -1002 region of the TGF-beta1 promoter shows high homology to glucose-response elements (GlRE) formerly described in genes involved in glucose metabolism, we studied the function of the GlRE in the high glucose-induced TGF-beta1 gene activation in mesangial cells. We found that high glucose concentrations enhanced the nuclear amount of upstream stimulatory factors (USF) and their binding to this sequence. Fusion of the GlRE to the thymidine kinase promoter resulted in glucose responsiveness of this promoter construct. Overexpression of either USF-1 or USF-2 increased TGF-beta1 promoter activity 2-fold, which was prevented by mutation or deletion of the GlRE. The high glucose-induced activation of the GlRE is mediated by the HBP; increased flux through the HBP induced by high glucose concentrations, by glutamine, or by overexpression of the rate-limiting enzyme glutamine:fructose-6-phosphate aminotransferase (GFAT) particularly activated USF-2 expression. GFAT-overexpressing cells showed higher USF binding activity to the GlRE and enhanced promoter activation via the GlRE. Increasing O-GlcNAc modification of proteins by streptozotocin, thereby mimicking HBP activation, also resulted in increased mRNA and nuclear protein levels of USF-2, leading to enhanced DNA binding activity to the GlRE. USF proteins themselves were not found to be O-GlcNAc-modified. Thus, we have provided evidence for a new molecular mechanism linking high glucose-enhanced HBP activity with increased nuclear USF protein levels and DNA binding activity and with up-regulated TGF-beta1 promoter activity.  相似文献   

9.
10.
11.
12.
13.
Many growth regulatory stimuli promote cAMP response element-binding protein (CREB) Ser(133) phosphorylation, but the physiologically relevant CREB-Ser(133) kinase(s) in the heart remains uncertain. This study identifies a novel role for protein kinase D (PKD) as an in vivo cardiac CREB-Ser(133) kinase. We show that thrombin activates a PKCdelta-PKD pathway leading to CREB-Ser(133) phosphorylation in cardiomyocytes and cardiac fibroblasts. alpha(1)-Adrenergic receptors also activate a PKCdelta-PKD-CREB-Ser(133) phosphorylation pathway in cardiomyocytes. Of note, while the epidermal growth factor (EGF) promotes CREB-Ser(133) phosphorylation via an ERK-RSK pathway in cardiac fibroblasts, the thrombin-dependent EGFR transactivation pathway leading to ERK-RSK activation does not lead to CREB-Ser(133) phosphorylation in this cell type. Adenoviral-mediated overexpression of PKCdelta (but not PKCepsilon or PKCalpha) activates PKD; PKCdelta and PKD1-S744E/S748E overexpression both promote CREB-Ser(133) phosphorylation. Pasteuralla multocida toxin (PMT), a direct Galpha(q) agonist that induces robust cardiomyocyte hypertrophy, also activates the PKD-CREB-Ser(133) phosphorylation pathway, leading to the accumulation of active PKD and Ser(133)-phosphorylated CREB in the nucleus, activation of a CRE-responsive promoter, and increased Bcl-2 (CREB target gene) expression in cardiomyocyte cultures. Cardiac-specific Galpha(q) overexpression also leads to an increase in PKD-Ser(744)/Ser(748) and CREB-Ser(133) phosphorylation as well as increased Bcl-2 protein expression in the hearts of transgenic mice. Collectively, these studies identify a novel Galpha(q)-PKCdelta-PKD-CREB-Ser(133) phosphorylation pathway that is predicted to contribute to cardiac remodeling and could be targeted for therapeutic advantage in the setting of heart failure phenotypes.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号