首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of glucose-6-phosphatase (G6P) expression by bile duct-like cells proliferating during hepatocarcinogenesis in the histogenesis of hepatocellular carcinoma is not clear. To this end, we measured the histochemical and biochemical activity of G6P in normal rat liver, and in rat livers in which bile duct-like proliferation was induced by either hyperplastic (bile duct ligation for 14 days or feeding alpha-naphthylisothiocyanate for 28 days) or neoplastic (feeding a choline-devoid diet containing 0.1% ethionine for 60 days) regimens. In normal, hyperplastic, and preneoplastic livers, G6P histochemical activity was confined to the hepatocytes; proliferated bile duct-like cells, like normal bile ducts, did not display visible G6P staining. When the enzyme activity was determined biochemically, however, hydrolysis of glucose-6-phosphate was observed in both parenchymal and nonparenchymal liver cells isolated from all experimental animals. In elutriated nonparenchymal fractions, G6P activity was directly proportional to the number of cells positive for gamma-glutamyl transpeptidase and cytokeratin no. 19 (markers of bile duct cells) and inversely proportional to the number of cells positive for vimentin (marker of mesenchymal cells). These results indicate that, while by light microscopy hepatic G6P histochemical activity is detectable only in the hepatocytes, the biochemical activity is also expressed in proliferating bile duct-like cells. However, the nonparenchymal activity is observed during both neoplastic and hyperplastic liver growth, thus indicating that the presence of this enzyme in bile duct-like cells proliferating during hepatocarcinogenesis should not necessarily be construed as supporting their stem cell nature nor their neoplastic commitment.  相似文献   

2.
The significance of glucose-6-phosphatase (G6P) expression by bile duct-like cells proliferating during hepatocarcinogenesis in the histogenesis of hepatocellular carcinoma is not clear. To this end, we measured the histochemical and biochemical activity of G6P in normal rat liver, and in rat livers in which bile duct-like proliferation was induced by either hyperplastic (bile duct ligation for 14 days or feeding alpha-naphthylisothiocyanate for 28 days) or neoplastic (feeding a choline-devoid diet containing 0.1% ethionine for 60 days) regimens. In normal, hyperplastic, and preneoplastic livers, G6P histochemical activity was confined to the hepatocytes; proliferated bile duct-like cells, like normal bile ducts, did not display visible G6P staining. When the enzyme activity was determined biochemically, however, hydrolysis of glucose-6-phosphate was observed in both parenchymal and nonparenchymal liver cells isolated from all experimental animals. In elutriated nonparenchymal fractions, G6P activity was directly proportional to the number of cells positive for gamma-glutamyl transpeptidase and cytokeratin no. 19 (markers of bile duct cells) and inversely proportional to the number of cells positive for vimentin (marker of mesenchymal cells). These results indicate that, while by light microscopy hepatic G6P histochemical activity is detectable only in the hepatocytes, the biochemical activity is also expressed in proliferating bile duct-like cells. However, the nonparenchymal activity is observed during both neoplastic and hyperplastic liver growth, thus indicating that the presence of this enzyme in bile duct-like cells proliferating during hepatocarcinogenesis should not necessarily be construed as supporting their stem cell nature nor their neoplastic commitment.  相似文献   

3.
Sublethal concentrations (0.04 ppm) of cypermethrin induced significant metabolic changes in brain, liver and gill tissues of fish, T. mossambica. While cypermethrin caused depletion in glycogen and pyruvate levels lactate content was elevated in all the tissues. While phosphorylase 'a' and aldolase activity increased, phosphorylase 'b' activity registered a decrease in the present study. A decrease in lactate dehydrogenase activity with increase in lactate levels suggests reduced mobilization of pyruvate into citric acid cycle. Glucose-6-phosphate dehydrogenase activity was also elevated indicating enhanced oxidation through HMP pathway during cypermethrin toxicity. Inhibition of succinate, malate and isocitrate dehydrogenases and cytochrome c oxidase activity indicates impaired oxidation of carbohydrates through citric acid cycle.  相似文献   

4.
The effect of experimentally induced cholestasis on the amount of phosphoenolpyruvate carboxykinase (PEPCK) was studied immunohistochemically in rat liver parenchyma. In control liver, the enzyme was mainly localized periportally and, although the enzyme content was much reduced, this distribution pattern was maintained up to 2 weeks after ligation of the common bile duct. At 4 and 8 weeks after ligation the enzyme content in parenchymal cells remained low, but became distributed homogeneously throughout the liver parenchyma. This suggests that after bile duct ligation, gluconeogenesis from lactate is impaired. This may well be the cause of the adaptive changes to enhance the glycogenolytic capacity of parenchymal cells to maintain as far as possible a constant blood glucose level.  相似文献   

5.
Enzyme histochemical methods were performed on sporozoite infected liver tissue of rats in order to gain insight into the nutrition and metabolism of exoerythrocytic forms of Plasmodium berghei. The following enzymes were demonstrated in the hepatocytic stages of the parasites, obtained 41 and 48 h after inoculation of sporozoites: acid phosphatase, cytochrome oxidase, NADH-tetrazolium reductase, succinate dehydrogenase, NAD+ and NADP+ dependent isocitrate dehydrogenase, NADP+-dependent malate dehydrogenase, lactate dehydrogenases, 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenases and alpha-glycerol-phosphate dehydrogenase. The results suggest that a conventional Embden-Meyerhoff pathway, pentose phosphate pathway and Krebs' citric acid cycle may in part be present in these exoerythrocytic parasites. Alkaline phosphatase, nucleoside polyphosphatase, 5' nucleotidase, glucose-6-phosphatase, alpha-glucan phosphorylase, NAD+ dependent malate dehydrogenase, amino-peptidase M and non-specific esterases were not detected by our techniques in the parasite. The enzyme distribution of this intrahepatocytic malaria parasite revealed by histochemistry is compared with the enzyme distribution in the other phases of the parasite's life cycle.  相似文献   

6.
Metastases in rat liver were generated experimentally by intraportal injection of colon cancer cells to investigate the effects of cancerous growth on the metabolism of surrounding liver tissue. Maximum activities (capacity) of glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, lactate dehydrogenase, succinate dehydrogenase, alkaline phosphatase, 5-nucleotidase, xanthine oxidoreductase, purine nucleoside phosphorylase and adenosine triphosphatase have been determined. Two types of metastases were found, a small type surrounded by stroma and a larger type in direct contact with hepatocytes. Both types affected the adjacent tissue in a similar way suggesting that the interactions were not mediated by stroma. High capacity of the degradation pathway of extracellular purines released from dead cells of either tumours or host tissue was found in stroma and sinusoidal cells. Metastases induced both an increase in the number of Kupffer cells and proliferation of hepatocytes. The distribution pattern in the liver lobulus of most enzymes investigated did not change distinctly. However, activity of alkaline phosphatase, succinate dehydrogenase and phosphogluconate dehydrogenase was increased in hepatocytes directly surrounding metastases. These data imply that the overall metabolic zonation in liver lobuli is not dramatically disturbed by the presence of cancer cells despite the fact that various metabolic processes in liver cells are affected.In honour of Prof. Dr. Z. Lojda for his 65th birthday  相似文献   

7.
A correlated morphological and cytochemical approach was employed to study frog hepatocytes in different periods of their annual cycle, including the natural hibernating period. There were considerable changes in the distribution and organization of hepatic glycogen in different phases of the annual cycle, and distribution of organelles as well. The most striking findings were glycogen storage during the prehibernation and hibernation phases, followed by drastic glycogen depletion. Cytochemical staining of a number of enzymes (succinate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, paranitrophenyl phosphatase, acid phosphatase, and glucose-6-phosphatase) involved in a variety of metabolic pathways, showed various cytoplasmic localizations and differences in intensity of the reaction products as a function of seasonality. Morphological and cytochemical data were interpreted as evidencing different functional requirements during seasonal changes in the frog.  相似文献   

8.
Glycogen synthase, glycogen phosphorylase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase were determined for the first time in the necessary lobes of Lachi from late embryonic chicks. The activities of these enzymes were compared with those found in other glycogen-metabolizing tissues, specifically the glycogen body, liver, and skeletal muscle, obtained from the same embryos. The data show that, as in the glycogen body, the accessory lobes of Lachi lack glucose-6-phosphatase, but contain relatively high activity levels of glycogen synthase I, total and active glycogen phosphorylase, and the dehydrogenases of glucose-6-phosphate and 6-phosphogluconate. The percent of glycogen synthase I activity in the Lachi lobes is from two- to 20-fold greater than observed in the glycogen body, liver, or muscle, whereas the percent of glycogen phosphorylase a activity is comparable to that of the liver, but greater than that in the glycogen body or muscle. The activity of each dehydrogenase of the pentose phosphate cycle in the Lachi lobes is similar to that noted in the glycogen body, but is over two- or fivefold greater than that activity found in muscle or liver. Our data, together with other recent evidence, suggest that the role of glycogen in these functionally enigmatic tissues may be to support the precocious process of myelin synthesis in the developing bird, as well as possibly to provide alternate sources of energy for the avian central nervous system.  相似文献   

9.
Activities of three NADP+-dependent enzymes (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase) were demonstrated in the first layer of hepatocytes adjacent to terminal hepatic venules (perivenous limiting plate), and in the residual parenchyma of the perivenous zone of the acinus, in normally fed adult male Wistar rats, using a Lowry technique and a qualitative histochemical staining reaction. Enzyme activities of the glucose-6-phosphate dehydrogenase were significantly higher in the hepatocytes adjacent to terminal hepatic venules (ratio hepatocytes adjacent to terminal hepatic venules/residual parenchyma of the perivenous zone: 1.31). 6-Phosphogluconate dehydrogenase and isocitrate dehydrogenase were homogeneously distributed in the two areas measured (ratio: 1.04 and ratio: 1.0 respectively). With the qualitative histochemical staining reactions no differences were found.  相似文献   

10.
In the subcommissural organ (SCO) of the guinea pig, rat, golden hamster, and mouse the activity and distribution of enzymes related to the energy-supplying metabolism and of some marker enzymes of different cell organelles have been investigated by means of mostly modified histochemical methods. The results were compared with findings in the ciliated ependyma of the ventricular wall and with those in the ependyma of the choroid plexus of the third ventricle. In the ependymal part of the SCO only a moderate activity of hexokinase is observed in its specialized columnar cells whereas a high activity is present both in the ciliated ependyma and the choroid plexus. - The staining pattern of glucose-6-phosphatase is similar to that of hexokinase but this enzyme is found is the SCO only. - Likewise hexokinase, glycogen granules and enzymes related to glycogen metabolism (phosphoglucomutase, uridine-diphosphoglucose pyrophosphorylase, glycogen synthetase and phosphorylase) are regularly found most numerous and active in the nuclear and supra-nuclear area of the ependymal part. These enzymes are less active in both the other ependymal regions. - Uridine-diphosphoglucose dehydrogenase could not be demonstrated in the SCO. The NADP-linked enzymes of the pentose phosphate shunt, glucose-6-phosphate and 6-phosphogluconate dehydrogenase, show a moderate activity which decreases also from the nuclear towards the apical area of the ependymal cells of the SCO. Enzymes of the glycolytic pathway, such as glucosephosphate isomerase, fructose-6-phosphate kinase, fructose-I,6-diphosphate aldolase, glyceraldehyde-3-phosphate and lactate dehydrogenase, are highly active in the SCO and are located mainly in the supranuclear area, too. Fructose-1,6-diphosphatase could not be demonstrated thus indicating that in the SCO the pathway is most probably only glycolytic but not gluconeogenetic. Compared to the ependyma of the ventricular wall and of the choroid plexus, in the SCO the M type subunits of lactate dehydrogenase predominate. Glycolytic enzymes are also very active in the choroid plexus but less in the ciliated ependyma. Compared to the ciliated ependyma and especially to the ependyma of the choroid plexus, the activities of enzymes which are only present in mitochondria (NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, NAD-linked malate dehydrogenase after preextraction, cytochrome oxidase, 3-hydroxybutyrate and glycerolphosphate and glutamate dehydrogenase) are relatively low. Mitochondria are accumulated near the superior pole of the nuclei as well as in the most apical part of the ependymal cells. - The staining pattern of NADP-linked isocitrate and malate dehydrogenase as well as of NADH dehydrogenase suggests that these enzymes are localized both in and out of mitochondria. The extramitochondrial activity of the first two enzymes might be localized in the cytosol. The extramitochondrial activity of NADH dehydrogenase might be localized in the endoplasmic reticulum...  相似文献   

11.
Effect of feeding isolated dietary fiber from M. paradisiaca on the metabolism of carbohydrates in the liver has been studied. Fiber fed rats showed significantly lower levels of fasting blood glucose and higher concentration of liver glycogen. Activity of glycogen phosphorylase, glucose-1-phosphate, uridyl transferase and glycogen synthase was significantly higher while phosphoglucomutase activity showed lower activity. Activity of some glycolytic enzymes, viz. hexokinase and pyruvic kinase was lower. Glucose-6-phosphatase showed higher activity while fructose 1-6 diphosphatase activity was not affected. Glucose-6-phosphate dehydrogenase on the other hand showed higher activity. The changes in these enzyme activities have been attributed due to the effect of higher concentration of bile acids produced in the liver as a result of feeding fiber. Evidence for this has been obtained by studying the in vitro effect of cholic acid and chenodeoxy cholic acid.  相似文献   

12.
Summary The levels of succinate, lactate, glutamate, glycerophosphate and glucose-6-phosphate dehydrogenases within the linings of keratinizing and non-keratinizing odontogenic cysts were investigated using static end-point and continuously monitored Nitroblue Tetrazolium-based histochemical methods. The use of TV image analysis for quantification of formazan final reaction products was validated by demonstrating significant relationships between the integrated absorbance at 585 nm and the amount of formazan in, and thickness of, gelatin films containing reduced tetrazolium salt (r=1.0,p<0.001). Absorbance readings of stained sections gave mean coefficients of variation of 1.8±0.9% between day of measurement, and of 5.65±1.32% between serial sections. End-point assays indicated that the linings of odontogenic keratocysts contained higher levels of glucose-6-phosphate dehydrogenases (p<0.0002) and lower levels of lactate dehydrogenase (p<0.002) than those of radicular cysts. Succinate, glutamate and glycerophosphate dehydrogenase activities were similar in both cyst types. Results from continously monitored assays, performed for glucose-6-phosphate and succinate dehydrogenases, demonstrated linear reaction rates over the first 2.75 min of reaction. The calculated enzyme activities from continuous assays were between 1.49 and 3.49 times higher than those determined from end-point assays and confirmed that levels of glucose-6-phosphate dehydrogenase were significantly higher in the linings of odontogenic keratocysts than those of radicular cysts (p<0.004). By contrast, succinate dehydrogenase activity was significantly higher in radicular cyst linings (p<0.03). These results highlight the benefits of an approach toin situ determination of enzyme activity using image analysis and continous monitoring methodologies. Overall, the high level of glucose-6-phosphate dehydrogenase found in keratocyst linings is consistent with their clinical behaviour and higher level of proliferation and synthetic activity whereas the level of lactate dehydrogenase in radicular cysts probably reflects the presence of local tissue damage within these inflammatory lesions.  相似文献   

13.
The histochemical localization of six enzymic activities (acetylcholinesterase, pseudocholinesterase, monoamine oxidase, lactate dehydrogenase, succinate dehydrogenase and glucose-6-phosphate dehydrogenase) has been studied in the vagal and facial lobes of the goldfish, Carassius auratus. These encephalic centers are hypertrophic in Cyprinidae, corresponding to the dominance of gustatory function. Acetylcholinesterase shows a complex laminar distribution in the vagal lobes and a peculiar cellular localization in vagal motor neurons. Monoamine oxidase activity is mainly evident in fibrous tracts coming to or leaving from the lobes. Among oxidative enzymes examined, lactate dehydrogenase and succinate dehydrogenase exhibit distribution patterns respectively similar to those observed for acetylcholinesterase and monoamine oxidase. Some features on enzymes distribution in the gustatory centers of Carassius are in agreement with the enzymatic patterns well known in higher vertebrates.  相似文献   

14.
Enzyme histochemical techniques were applied to frozen sheep uteri from different stages of the oestrous cycle. The localization and activities of succinate, lactate, glucose-6-phosphate, and isocitrate (NADP+) dehydrogenases and acid and alkaline phosphatases were studied in the luminal and glandular epithelia, caruncle and myometrium. Enzyme activity in the sections was scored on a scale of 0--5. In general the enzyme activity in the uterine caruncles and epithelia was higher than in the myometrium. The myometrium did not show any alkaline phosphatase activity and isocitrate dehydrogenase (NADP+) activity was negligible. The low activities of acid phosphatase and lactate dehydrogenase and the moderate levels of glucose-6-phosphate and succinate dehydrogenases in the myometrium were constant. The caruncular tissue showed high levels of phosphatases and glucose-6-phosphate dehydrogenase, moderate levels of lactate and succinate dehydrogenases, and low levels of isocitrate dehydrogenase (NADP+) throughout the oestrous cycle. Much lower phosphatase and isocitrate dehydrogenase (NADP+) levels were found in the epithelium of deep glands compared with superficial glands. The high activity of acid and alkaline phosphatases in the luminal epithelium and the superficial glands was constant from mid-cycle to ovulation, but a significant decrease was observed immediately after ovulation. The level of dehydrogenases in epithelia was generally high and did not change during the oestrous cycle.  相似文献   

15.
Summary Activities of three NADP+-dependent enzymes (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase) were demonstrated in the first layer of hepatocytes adjacent to terminal hepatic venules (perivenous limiting plate), and in the residnal parenchyma of the perivenous zone of the acinus, in normally fed adult male Wistar rats, using a Lowry technique and a qualitative histochemical staining reaction. Enzyme activities of the glucose-6-phosphate dehydrogenase were significantly higher in the hepatocytes adjacent to terminal hepatic venules (ratio hepatocytes adjacent to terminal hepatic venules/residual parenchyma of the perivenous zone: 1.31). 6-Phosphogluconate dehydrogenase and isocitrate dehydrogenase were homogeneously distributed in the two areas measured (ratio: 1.04 and ratio: 1.0 respectively). With the qualitative histochemical staining reactions no differences were found.Supported by the Deutsche Forschungsgemeinschaft (Hi318/2-1)  相似文献   

16.
Enzymes of Energy Metabolism in the Mudpuppy Retina   总被引:1,自引:0,他引:1  
Abstract: The distributions of glycogen phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, citrate synthase, malate dehydrogenase, β-hydroxyacyl CoA dehydrogenase, and adenylokinase were determined in the mudpuppy retina. Distinct differences were found in regard to the glycolytic and oxidative capacities of the various layers. In the outer retina, citric acid cycle enzymes were high while glycolytic enzymes were low. Synaptic zones were distinctly enriched in all energy-producing enzymes. Mudpuppy photoreceptors were found to be rich in phosphorylase but poor in glucose-6-phosphate dehydrogenase, suggestive of some evolutionary divergence from mammals in the metabolic machinery which is used to support the visual process.  相似文献   

17.
M Sch?r  I P Maly  D Sasse 《Histochemistry》1985,83(2):147-151
The livers of 26 adult male and female trout were studied histochemically. G6Pase activity was always found to be heterotopically distributed with a constant maximum in the periportal area. In many cases the glycogen content and the activity of phosphorylase predominated in the periportal zone as well. Maximum activity of glucose-6-phosphate-dehydrogenase and malic enzyme, however, could be demonstrated preferentially in the perivenous area. Lactate dehydrogenase, succinate dehydrogenase, alcohol dehydrogenase, acid phosphatase and beta-glucuronidase were found equally in all liver cells. 3-Hydroxybutyrate dehydrogenase was absent. Thus, the principles of metabolic zonation have been established in trout liver, the architecture of which differs essentially from that of mammals. The course of the terminal afferent and efferent vessels is the decisive factor for the heterotopic localization of functional units rather than the tubular or plate-forming arrangement of the hepatocytes.  相似文献   

18.
The coexpression of normally periportal and perivenous markers has been described in heterotopically transplanted hepatocytes. To determine whether such a coexpression might also occur in hepatocytes retaining their original intrahepatic location, we compared in bileduct-ligated livers and intrasplenically transplanted hepatocytes, the expression and distribution of the predominantly periportal glucose-6-phosphatase, succinate dehydrogenase, and lactate dehydrogenase, the predominantly perivenous glutamate dehydrogenase, NADPH-dehydrogenase, and -hydroxybutyrate dehydrogenase, and the strictly perivenous glutamine synthetase. The coexpression of high levels of the two periportal markers glucose-6-phosphatase and lactate dehydrogenase and of the perivenous marker NADPH dehydrogenase was observed in two situations: in clusters of hepatocytes isolated within the ductular proliferation in bile-duct-ligated livers and the majority of intrasplenically transplanted hepatocytes. The expression of glutamine synthetase was different according to the site. The protein was observed in certain intrasplenically transplanted hepatocytes bordering the splenic vessels but was never detected in hepatocyte clusters found in bile-duct-ligated livers. Our study therefore suggests that the coexpression of periportal and perivenous markers in the same hepatocytes is likely to be a non-specific consequence of the loss of the normal connections of hepatocytes with the normal liver microcirculation.  相似文献   

19.
In order to examine glucose metabolism in liver grafts after cold ischemia and reperfusion, the heterogeneous lobular distribution pattern of glycogen content and glucose-6-phosphatase activity was studied using histochemical methods. The characteristic heterogeneous lobular distribution pattern of glycogen and glucose-6-phosphatase was maintained after preservation and reperfusion. However, it appeared that glycogen content decreased in both periportal and centrilobular hepatocytes after reperfusion. The glycogen decrease was higher in periportal hepatocytes. Glucose-6-phosphatase activity was maintained after reperfusion in most of the cases in periportal hepatocytes. In centrilobular hepatocytes, more cases showed a decrease in enzyme activity. It is suggested that ischemia-reperfusion mainly affects the glycogen content in both periportal and centrilobular hepatocytes and that centrilobular glucose-6-phosphatase activity is more sensitive to ischemia-reperfusion injury than periportal hepatocytes.  相似文献   

20.
R M Rakita  B R Michel  H Rosen 《Biochemistry》1990,29(4):1075-1080
Neutrophil myeloperoxidase, hydrogen peroxide, and chloride constitute a potent antimicrobial system with multiple effects on microbial cytoplasmic membranes. Among these is inhibition of succinate-dependent respiration mediated, principally, through inactivation of succinate dehydrogenase. Succinate-dependent respiration is inhibited at rates that correlate with loss of microbial viability, suggesting that loss of respiration might contribute to the microbicidal event. Because respiration in Escherichia coli can be mediated by dehydrogenases other than succinate dehydrogenase, the effects of the myeloperoxidase system on other membrane dehydrogenases were evaluated by histochemical activity stains of electrophoretically separated membrane proteins. Two bands of succinate dehydrogenase activity proved the most susceptible to inactivation with complete loss of staining activity within 20 min, under the conditions employed. A group with intermediate susceptibility, consisting of lactate, malate, glycerol-3-phosphate, and dihydroorotate dehydrogenases as well as three bands of glucose-6-phosphate dehydrogenase, was almost completely inactivated within 30 min. The relatively resistant group, including the dehydrogenases for glutamate, NADH, and NADPH and the remaining bands of glucose-6-phosphate dehydrogenase, retained substantial amounts of diaphorase activity for up to 60 min of incubation with the myeloperoxidase system. The differential effects of myeloperoxidase on dehydrogenase inactivation could not be correlated with published enzyme contents of flavin or iron-sulfur centers, potential targets of myeloperoxidase-derived oxidants. Despite the relative resistance of NADH dehydrogenase/diaphorase activity to myeloperoxidase-mediated inactivation, electron transport particles prepared from E. coli incubated for 20 min with the myeloperoxidase system lost 55% of their NADH oxidase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号