首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A defined medium was developed for Methanomicrobium mobile BP. M. mobile required acetate for growth; the optimal concentration was 30 mM. Other requirements and their optimal concentrations included isobutyrate (0.65 mM), isovalerate (0.73 mM), and 2-methylbutyrate (1.5 mM). The appropriate branched-chain amino acids did not substitute for these branched-chain fatty acids. M. mobile required tryptophan at an optimal concentration of 24 microM. Indole substituted for tryptophan, but the possible precursor compounds shikimic acid and anthranilic acid and the degradation compound skatole did not. Vitamin requirements and their optimal concentrations included pyridoxine (0.49 microM), thiamine (0.15 microM), biotin (0.04 microM), and vitamin B12 (0.04 microM); p-aminobenzoic acid (0.18 microM) was required for optimal growth, but folic acid did not replace p-aminobenzoic acid. M. mobile required an unidentified growth factor found in ruminal fluid or extracts of Methanobacterium thermoautotrophicum for growth. M. mobile has a complex nutrition compared with that of other methanogens, but not an unusual nutrition in the context of organisms from the ruminal ecosystem.  相似文献   

2.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

3.
The minimal nutritional growth requirements were determined for strains Okra B and Iwanai E, which are representatives of groups I and II, respectively, of Clostridium botulinum. These type B and E strains differed considerably in their nutrient requirements. The organic growth factors required in high concentrations by the Okra B strain (group I) were arginine and phenylalanine. Low concentrations (less than or equal to 0.1 g/liter) of eight amino acids (methionine, leucine, valine, isoleucine, glycine, histidine, tryptophan, and tyrosine) and of five vitamins (pyridoxamine, p-aminobenzoic acid, biotin, nicotinic acid, and thiamine) were also essential for biosynthesis. The 10 required amino acids could be replaced by intact protein of known composition by virtue of the bacterium's ability to synthesize proteases. Glucose or other carbohydrates were not essential for Okra B, although they did stimulate growth. Quantitatively, the most essential nutrients for Okra B were arginine and phenylalanine. In contrast, the nonproteolytic strain, Iwanai E (group II), did not require either arginine or phenylalanine. It required glucose or another carbohydrate energy source for growth and did not utilize arginine or intact protein as a substitute source of energy. Iwanai E utilized ammonia as a nitrogen source, although growth was stimulated significantly by organic nitrogenous nutrients, especially glutamate and asparagine. Iwanai E also required biosynthesis levels of seven amino acids (histidine, isoleucine, leucine, tryptophan, tyrosine, valine, and serine), adenine, and six vitamins (biotin, thiamine, pyridoxamine, folic acid, choline, and nicotinamide). Calcium pantothenate also stimulated growth. On the basis of the nutritional requirements, chemically defined minimal media have been constructed for C. botulinum serotypes A, B, E, and F (proteolytic).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The minimal nutritional growth requirements were determined for strains Okra B and Iwanai E, which are representatives of groups I and II, respectively, of Clostridium botulinum. These type B and E strains differed considerably in their nutrient requirements. The organic growth factors required in high concentrations by the Okra B strain (group I) were arginine and phenylalanine. Low concentrations (less than or equal to 0.1 g/liter) of eight amino acids (methionine, leucine, valine, isoleucine, glycine, histidine, tryptophan, and tyrosine) and of five vitamins (pyridoxamine, p-aminobenzoic acid, biotin, nicotinic acid, and thiamine) were also essential for biosynthesis. The 10 required amino acids could be replaced by intact protein of known composition by virtue of the bacterium's ability to synthesize proteases. Glucose or other carbohydrates were not essential for Okra B, although they did stimulate growth. Quantitatively, the most essential nutrients for Okra B were arginine and phenylalanine. In contrast, the nonproteolytic strain, Iwanai E (group II), did not require either arginine or phenylalanine. It required glucose or another carbohydrate energy source for growth and did not utilize arginine or intact protein as a substitute source of energy. Iwanai E utilized ammonia as a nitrogen source, although growth was stimulated significantly by organic nitrogenous nutrients, especially glutamate and asparagine. Iwanai E also required biosynthesis levels of seven amino acids (histidine, isoleucine, leucine, tryptophan, tyrosine, valine, and serine), adenine, and six vitamins (biotin, thiamine, pyridoxamine, folic acid, choline, and nicotinamide). Calcium pantothenate also stimulated growth. On the basis of the nutritional requirements, chemically defined minimal media have been constructed for C. botulinum serotypes A, B, E, and F (proteolytic).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The nutritional requirements of Selenomonas ruminantium HD4 for growth on glucose, glycerol, or lactate were investigated to clarify the results of previous studies and to relate the nutrition of the organism to its physiology. The organism required l-aspartate, CO(2), p-aminobenzoic acid, and biotin for growth on a lactate-salts medium that contained small amounts of dithiothreitol. Aspartate could be replaced by l-malate or fumarate but not by succinate or l-asparagine. Requirements for growth with glycerol as an energy source were similar, except that aspartate was not required. With glucose as the energy source, neither aspartate nor p-aminobenzoic acid was required, but a requirement for volatile fatty acids, which could be met by n-valerate, was observed. CO(2) was required for growth on lactate or glycerol but not on glucose on complex media containing Trypticase and yeast extract. Sulfide could be used as the sole source of sulfur.  相似文献   

6.
Characterization of rat cecum cellulolytic bacteria.   总被引:10,自引:8,他引:2       下载免费PDF全文
Cellulose-degrading bacteria previously isolated from the ceca of rats have been characterized and identified. The most commonly isolated type was rods identified as Bacteroides succinogenes. These bacteria fermented only cellulose (e.g., pebble-milled Whatman no. 1 filter paper), cellobiose, and in 43 of 47 strains, glucose, with succinic and acetic acids as the major products. The only organic growth factors found to be required by selected strains were p-aminobenzoic acid, cyanocobalamine, thiamine, and a straight-chain and a branched-chain volatile fatty acid. These vitamin requirements differ from those of rumen strains of B. succinogenes, indicating the rat strains may form a distinct subgroup within the species. The mole percent guanine plus cytosine was 45%, a value lower than those (48 to 51%) found for three rumen strains of B. succinogenes included in this study. Cellulolytic cocci were isolated less frequently than the rods and were identified as Rumminococcus flavefaciens. Most strains fermented only cellulose and cellobiose, and their major fermentation products were also succinic and acetic acids. Their required growth factors were not identified but were supplied by rumen fluid.  相似文献   

7.
Methanomicrobium mobile requires a heat-stable factor present in ruminal fluid and in boiled cell extract from Methanobacterium thermoautotrophicum for growth. By comparing the growth of M. mobile with boiled cell extract with that observed with various methanogenic cofactors, we found that 7-mercaptoheptanoylthreonine phosphate (HS-HTP) supported sustained growth of M. mobile, at an optimal concentration of 100 microM. No derivatives or possible biosynthetic precursors of HS-HTP could replace HS-HTP as the sole source of growth factor. Results suggest that the growth requirement might be satisfied by 7-mercaptoheptanoic acid plus a second, unidentified heat-stable factor.  相似文献   

8.
Methanomicrobium mobile requires a heat-stable factor present in ruminal fluid and in boiled cell extract from Methanobacterium thermoautotrophicum for growth. By comparing the growth of M. mobile with boiled cell extract with that observed with various methanogenic cofactors, we found that 7-mercaptoheptanoylthreonine phosphate (HS-HTP) supported sustained growth of M. mobile, at an optimal concentration of 100 microM. No derivatives or possible biosynthetic precursors of HS-HTP could replace HS-HTP as the sole source of growth factor. Results suggest that the growth requirement might be satisfied by 7-mercaptoheptanoic acid plus a second, unidentified heat-stable factor.  相似文献   

9.
Three strains of Succinivibrio dextrinosolvens isolated from the rumen of cattle or sheep under diverse conditions grew well in a minimal medium containing glucose, minerals, cysteine, methionine, leucine, serine, ammonia, 1,4-naphthoquinone, p-aminobenzoic acid, and bicarbonate-carbonic acid buffer, pH 6.7. When menadione or vitamin K5 was substituted for 1,4-naphthoquinone, the growth rate was somewhat depressed. Growth was poor with vitamin K1 and ammonia, further addition of the amino acids aspartic acid, arginine, histidine, and tryptophan was necessary for good growth of type strain 24, but the other two strains grew well only in media containing ammonia. Strains C18 and 22B produced urease and grew well when ammonia replaced urea. When urea replaced ammonia, strain 24 grew poorly and urease activity could not be detected. Strain 24 required no B-vitamins, but the other two strains were stimulated by p-aminobenzoic acid. The methionine requirement was not placed by vitamin B12, betaine, or homocysteine. Cysteine was replaced by sulfide in strain 24 but less well in the other two strains. Very poor growth was obtained when sulfate replaced cysteine. The half-saturation constant for ammonia during growth of S. dextrinosolvens is more than 500 microM, a much higher value than that of many rumen bacteria.  相似文献   

10.
A recently isolated ruminal peptostreptococcus which produced large amounts of branched-chain volatile fatty acids grew rapidly with leucine as an energy source in the presence but not the absence of Na. Leucine transport could be driven by an artificial membrane potential (delta psi) only when Na was available, and a chemical gradient of Na+ (delta uNa+) also drove uptake. Because Na+ was taken up with leucine and a Z delta pH could not serve as a driving force (with or without Na), it appeared that leucine was transported in symport with Na+. The leucine carrier could use Li as well as Na and had a single binding site for Na+. The Km for Na was 5.2 mM, and the Km and Vmax for leucine were 77 microM and 328 nmol/mg of protein per min, respectively. Since valine and isoleucine competitively inhibited (Kis of 90 and 49 microM, respectively) leucine transport, it appeared that the peptostreptococcus used a common carrier for branched-chain amino acids. Valine or isoleucine was taken up rapidly, but little ammonia was produced if they were provided individually. The lack of ammonia could be explained by an accumulation of reducing equivalents. The ionophore, monensin, inhibited growth, but leucine was taken up and deaminated at a slow rate. Monensin caused a loss of K, an increase in Na, a slight increase in delta psi, and a decrease in intracellular pH. The inhibition of growth was consistent with a large decrease in ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A recently isolated ruminal peptostreptococcus which produced large amounts of branched-chain volatile fatty acids grew rapidly with leucine as an energy source in the presence but not the absence of Na. Leucine transport could be driven by an artificial membrane potential (delta psi) only when Na was available, and a chemical gradient of Na+ (delta uNa+) also drove uptake. Because Na+ was taken up with leucine and a Z delta pH could not serve as a driving force (with or without Na), it appeared that leucine was transported in symport with Na+. The leucine carrier could use Li as well as Na and had a single binding site for Na+. The Km for Na was 5.2 mM, and the Km and Vmax for leucine were 77 microM and 328 nmol/mg of protein per min, respectively. Since valine and isoleucine competitively inhibited (Kis of 90 and 49 microM, respectively) leucine transport, it appeared that the peptostreptococcus used a common carrier for branched-chain amino acids. Valine or isoleucine was taken up rapidly, but little ammonia was produced if they were provided individually. The lack of ammonia could be explained by an accumulation of reducing equivalents. The ionophore, monensin, inhibited growth, but leucine was taken up and deaminated at a slow rate. Monensin caused a loss of K, an increase in Na, a slight increase in delta psi, and a decrease in intracellular pH. The inhibition of growth was consistent with a large decrease in ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effect of phenolic monomers on ruminal bacteria   总被引:2,自引:0,他引:2  
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

13.
Effect of phenolic monomers on ruminal bacteria.   总被引:11,自引:10,他引:1       下载免费PDF全文
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

14.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

15.
Application of 100 microM aspterric acid (AA), a pollen growth inhibitor, with different concentrations of indole-3-acetic acid (IAA) results in the recovery of normal pollen development of Arabidopsis thaliana. Treatment with 100 microM AA plus 5 mM IAA significantly induced the normal seed production. Treatment with 100 microM N-1-naphthylphthalamic acid (NPA), a polar auxin transport inhibitor, did not reduce the pollen growth but inhibited seed production. 100 microM NPA plus 5 mM IAA did not induce any seed production. The endogenous level of IAA in stems and leaves of A. thaliana treated with 100 microM AA was similar to that of the untreated control. In contrast to AA treatment, the IAA level by the treatment with 100 microM NPA was about twice as much as that of the untreated control. These results suggest that AA affects the Arabidopsis reproductive growth without inhibiting IAA biosynthesis and transport.  相似文献   

16.
Long-chain cis-unsaturated fatty acids could substitute for phosphatidylserine and activate bovine aortic protein kinase C in assays with histone as substrate. The optimal concentration was 24-40 microM for oleic, linoleic and arachidonic acids. With arachidonic acid, the Ka for Ca2+ was 130 microM and kinase activity was maximal at 0.5 mM-Ca2+. Diolein only slightly activated the oleic acid-stimulated enzyme at low physiological Ca2+ concentrations (0.1 and 10 microM). Oleic acid also stimulated kinase C activity, determined with a Triton X-100 mixed-micellar assay. Under these conditions, the fatty acid activation was absolutely dependent on the presence of diolein, but a Ca2+ concentration of 0.5 mM was still required for maximum kinase C activity. The effect of fatty acids on protein kinase C activity was also investigated with the platelet protein P47 as a substrate, since the properties of kinase C can be influenced by the choice of substrate. In contrast with the results with histone, fatty acids did not stimulate the phosphorylation of P47 by the aortic protein kinase C. Activation of protein kinase C by fatty acids may allow the selective phosphorylation of substrates, but the physiological significance of fatty acid activation is questionable because of the requirement for high concentrations of Ca2+.  相似文献   

17.
Microbes in ruminal contents incorporated (14)C into cells when they were incubated in vitro in the presence of [(14)C]carboxyl-labeled indole-3-acetic acid (IAA). Most of the cellular (14)C was found to be in tryptophan from the protein fractions of the cells. Pure cultures of several important ruminal species did not incorporate labeled IAA, but all four strains of Ruminococcus albus tested utilized IAA for tryptophan synthesis. R. albus did not incorporate (14)C into tryptophan during growth in medium containing either labeled serine or labeled shikimic acid. The mechanism of tryptophan biosynthesis from IAA is not known but appears to be different from any described biosynthetic pathway. We propose that a reductive carboxylation, perhaps involving a low-potential electron donor such as ferredoxin, is involved.  相似文献   

18.
The herbicide sulfometuron methyl (SM) inhibited growth of some methanococci. Of 28 strains tested, the growth of 7 was completely inhibited by 0.55 mM SM. Growth of an additional 14 strains was partially inhibited, and the growth of 7 strains was unaffected by this concentration of SM. In some cases, the branched-chain amino acids protected growth. Growth inhibition was correlated with the Ki for SM of acetolactate synthase (ALS). For the enzymes from bacteria representative of the sensitive, partially resistant, and resistant methanococci (Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae, respectively), the Ki for SM was 0.0012, 0.34, and greater than 1.0 mM, respectively. Inhibition was uncompetitive with respect to pyruvate. Based on these observations, ALS appeared to be the major if not the sole site of action of SM in the methanococci. The sensitivity of the ALS from these three methanococci to feedback inhibition by branched-chain amino acids was also quite different. Although all three were sensitive to feedback inhibition by valine, the Ki varied 20-fold, from 0.01 to 0.22 mM. Moreover, only the ALS from M. maripaludis was sensitive to inhibition by leucine, and the Ki was 1.8 mM. The Ki for isoleucine for the ALS from both M. maripaludis and M. voltae was about 0.1 mM. The ALS from M. aeolicus was not inhibited by isoleucine. In other respects, the ALSs from the methanococci were very similar. After dialysis, thiamine pyrophosphate but not FAD and Mg2+ was required for maximal activity, and they were all rapidly inactivated by oxygen. Although the methanococcal ALSs exhibited diverse properties, the range of catalytic and regulatory properties closely resembled those of the eubacterial enzymes.  相似文献   

19.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

20.
Volatile Fatty Acid Requirements of Cellulolytic Rumen Bacteria   总被引:12,自引:1,他引:11  
A gas chromatographic method was developed which could separate the isomers isovaleric and 2-methylbutyric acid. Subsequent analyses revealed that most commercially available samples of these acids were cross-contaminated; however, one sample of each acid was found to be pure by this criterion. The growth response of seven strains of cellulolytic rumen bacteria (three strains of Bacteroides succinogenes, three strains of Ruminococcus flavefaciens, and one strain of R. albus) to additions of isobutyric, isovaleric, 2-methylbutyric, valeric, and combinations of valeric and a branched-chain acid was determined. Strains of B. succinogenes required a combination of valeric plus either isobutyric or 2-methylbutyric acid. Isovaleric acid was completely inactive. Either isobutyric or 2-methylbutyric acid was required for the growth of R. albus 7. Strain C-94 of R. flavefaciens grew slowly in the presence of any one of the three branched-chain acids, but a combination of isobutyric and 2-methylbutyric acids appeared to satisfy this organism's growth requirements. None of the individual acids or mixtures of straight- and branched-chain acids allowed growth of R. flavefaciens strain C1a which would approach the response obtained from the total mixture of acids. Further work indicated that all three branched-chain acids were required for optimal growth by this strain, although isovaleric acid only influenced the rate of maximal growth. Either 2-methylbutyric or isovaleric acid allowed growth of nearly the same magnitude as that of the positive control for R. flavefaciens B34b. The presence of acetic acid had little influence on the rate or extent of growth of any of the strains except R. albus 7, for which the extent of growth was markedly increased. Determination of the quantitative fatty acid requirements for the three B. succinogenes strains indicated that 0.1 μmole of valeric per ml and 0.05 μmole of 2-methylbutyric per ml permitted maximal growth. However, with isobutyric acid as the branched-chain component, strains A3c and B21a required 0.1 μmole/ml in contrast to S-85 which exhibited optimal growth at the 0.05 μmole/ml level. By use of mixtures of isobutyric and 2-methylbutyric acids, good growth of C-94 was obtained at concentrations of 0.1 and 0.01 μmole/ml, respectively. About 0.3 μmole/ml of each acid was required for satisfactory growth of C1a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号