首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single cubane cluster ferredoxin (Fd) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) possesses several unique properties when compared even to Fds from other hyperthermophilic archaea or bacteria. These include an equilibrium molecular heterogeneity, a six- to seven-residue increase in size, an Asp rather than the Cys as one cluster ligand, and a readily reducible disulfide bond. NMR assignments and determination of both secondary structure and tertiary contacts remote from the paramagnetic oxidized cluster of Pf 3Fe Fd with an intact disulfide bond reported previously (Teng Q., Zhou, Z. H., Smith, E. T., Busse, S. C., Howard, J. B. Adams, M. W. W., and La Mar, G. (1994) Biochemistry 33, 6316-6328) are extended here to the 4Fe oxidized cluster WT (1H and 15N) and D14C (1H only) Fds with an intact disulfide bond and to the 4Fe oxidized WT Fd (1H and 15N) with a cleaved disulfide bond. All forms are shown to possess a long (13-member) alpha-helix, two beta-sheets (one double-, one triple-stranded), and three turns outside the cluster vicinity, each with tertiary contacts among themselves as found in other Fds. While the same secondary structural elements, with similar tertiary contacts, are found in other hyperthermostable Fds, Pf Fd has two elements, the long helix and the triple-stranded beta-sheet, that exhibit extensions and form multiple tertiary contacts. All Pf Fd forms with an intact disulfide bond exhibit a dynamic equilibrium heterogeneity which is shown to modulate a hydrogen-bonding network in the hydrophobic core that radiates from the Cys21-Cys48 disulfide bond and encompasses residues Lys36, Val24, Cys21, and Cys17 and the majority of the long helix. The heterogeneity is attributed to population of the alternate S and R chiralities of the disulfide bond, each destabilized by steric interactions with the extended alpha-helix. Comparison of the chemical shifts and their temperature gradients reveals that the molecular structure of the protein with the less stable R disulfide resembles that of the Fd with a cleaved disulfide bond. Both cluster architecture (3Fe vs 4Fe) and ligand mutation (Cys for Asp14) leave the disulfide orientational heterogeneity largely unperturbed. It is concluded that the six- to seven-residue extension that results in a longer helix and larger beta-sheet in Pf Fd, relative to other hyperthermostable Fds, more likely serves to destabilize the disulfide bond, and hence make it more readily reducible, than to significantly increase protein thermostability.  相似文献   

2.
A solution molecular model for the conformationally dynamically heterogeneous Pyrococcus furiosus ferredoxin with an intact disulfide bond has been constructed on the basis of reported (1)H NMR spectral parameters using distance geometry and simulated annealing protocols. Conventional long-mixing time NOESY and H-bonding constraints have been augmented by previously reported short-mixing time NOESY, steady-state NOE, and cluster paramagnetism-induced relaxation. The family of 15 structures with inconsequential violations exhibited low rms deviations for backbone atoms for the overwhelming majority of the residues, including the cluster ligating loop with the unprecedented ligated Asp14. Larger rms deviations were observed across the disulfide bond, but closer inspection revealed that the 15 structures can be factored into 10 substructures exhibiting an "S" or right-handed disulfide orientation and 5 exhibiting an "R" or left-handed disulfide orientation. The remainder of the structure is indistinguishable for the two disulfide orientations but confirms stabilizing extensions of secondary structural elements in the lengthening of the long helix and both the lengthening and incorporation of a third strand into the beta-sheet involving the termini, with these extensions interacting strongly in a modular fashion through the rings of Tyr46 and Trp2. These extensions of stabilizing interactions in Pyrococcus furiosus Fd, however, lead to strong destabilization of the disulfide bond and destabilization of the highly conserved first and last beta-turns in the sequence. It is concluded that the structural alternations in Pyrococcus Fd relative to other hyperthermostable Fds are not to increase thermostability but to place "stress" on the disulfide bond and render it more reducible. The possible physiological implications of this unique reducible disulfide bond are discussed.  相似文献   

3.
The aggregating cartilage proteoglycan core protein contains two globular domains near the N terminus (G1 and G2) and one near the C terminus (G3). The G1-G3 domains contain 10, 8, and 10 cysteine residues, respectively. The disulfide assignments of the G1 domain have previously been deduced (Neame, P. J., Christner, J. E., and Baker, J. R. (1987) J. Biol. Chem. 262, 17768-17778) as Cys1-Cys2, Cys3-Cys6, Cys4-Cys5, Cys7-Cys10, and Cys8-Cys9, in which the numbers cited after the half-cystine residues are their relative positions from the N terminus. Here we describe a method for the isolation of disulfide-bonded peptides from tryptic digests of bovine nasal cartilage monomer. Sequence analysis of these peptides has allowed us to confirm the pairings previously determined for the G1 domain and to assign a disulfide pattern for the G2 domain of Cys11-Cys14, Cys12-Cys13, Cys15-Cys18, and Cys16-Cys17, in which the Cys15-Cys18 pairing was deduced indirectly. Similarly, for the G3 domain, a pattern of Cys19-Cys20, Cys21-Cys24, Cys22-Cys23, Cys25-Cys27, and Cys26-Cys28 was assigned, in which the Cys22-Cys23 pair was deduced indirectly. The G2 domain therefore contains disulfide bonding which is characteristic of the tandem repeat structures found in the G1 domain and link protein, and the G3 domain contains the three disulfide linkages previously assigned to the family of C-type animal lectins. The method described here, which combines anion-exchange, cation-exchange, and reversed-phase chromatography, should have broad application to the isolation of disulfide-bonded peptides from other heavily glycosylated proteins and proteoglycans.  相似文献   

4.
Lu BY  Jiang C  Chang JY 《Biochemistry》2005,44(45):15032-15041
The structure of human epidermal growth factor (EGF, 53 amino acids) comprises three distinct loops (A, B, and C) connected correspondingly by the three native disulfide bonds, Cys(6)-Cys(20), Cys(14)-Cys(31), and Cys(33)-Cys(42). The connection of Cys(6) and Cys(20) forming the N-terminal A loop is essential for the biological activity of EGF [Barnham et al. (1998) Protein Sci. 7, 1738-1749] and has also been shown to represent a major kinetic trap in the oxidative folding of EGF [Chang et al. (2001) J. Biol. Chem. 276, 4845-4852]. To further understand the chemical nature of this kinetic trap, we have prepared three EGF mutants each with a single Ser --> Cys mutation at Ser residues (Ser(2), Ser(4), and Ser(9)) flanking Cys(6). This allows competition between Cys(6) and mutated Cys(2), Cys(4), and Cys(9) to link with Cys(20) and to form EGF isomers containing different sizes of the A loop. The results show that, in the cases of EGF(S2C) and EGF(S4C), native Cys(6)-Cys(20) is favored over Cys(2)-Cys(20) and Cys(4)-Cys(20) by 4.5- and 9-fold, respectively, in the state of equilibrium. However, in the case of EGF(S9C), a non-native Cys(9)-Cys(20) is thermodynamically more stable than the native Cys(6)-Cys(20) by a free-energy difference (DeltaG degrees ) of 1.12 kcal/mol. Implications of these data in the formation of kinetic trap of EGF folding are discussed. Stabilized isomers of EGF were further generated from denaturation of wild-type and mutant EGF via the method of disulfide scrambling. Properties of these diverse isomers of EGF, including their isomerization, stability, unfolding, refolding, and disulfide structures, are described in this paper.  相似文献   

5.
The N-terminal 44 amino acid residues of the human plasma glycoprotein vitronectin, known as the somatomedin B (SMB) domain, mediates the interaction between vitronectin and plasminogen activator inhibitor 1 (PAI-1) in a variety of important biological processes. Despite the functional importance of the Cys-rich SMB domain, how its four disulfide bridges are arranged in the molecule remains highly controversial, as evidenced by three different disulfide connectivities reported by several laboratories. Using native chemical ligation and orthogonal protection of selected Cys residues, we chemically synthesized all three topological analogs of SMB with predefined disulfide connectivities corresponding to those previously published. In addition, we oxidatively folded a fully reduced SMB in aqueous solution, and prepared, by CNBr cleavage, the N-terminal segment of 51 amino acid residues of intact vitronectin purified from human blood. Proteolysis coupled with mass spectrometric analysis and functional characterization using a surface plasmon resonance based vitronectin-PAI-1-SMB competition assay allowed us to conclude that 1) only the Cys(5)-Cys(21), Cys(9)-Cys(39), Cys(19)-Cys(32), and Cys(25)-Cys(31) connectivity is present in native vitronectin; 2) only the native disulfide connectivity is functional; and 3) the native disulfide pairings can be readily formed during spontaneous (oxidative) folding of the SMB domain in vitro. Our results unequivocally define the native disulfide topology in the SMB domain of human vitronectin, providing biochemical as well as functional support to the structural findings on a recombinant SMB domain by Read and colleagues (Zhou, A., Huntington, J. A., Pannu, N. S., Carrell, R. W., and Read, R. J. (2003) Nat. Struct. Biol. 10, 541-544).  相似文献   

6.
The authors in a previous report (Klausner, R. D., Kempf, C., Weinstein, J. N., Blumenthal, R., and van Renswoude, J. (1983) Biochem. J. 212, 801-810) have argued that native folding of ovalbumin occurs during translation, but not in a renaturation system of the denatured form. To re-examine the possibility, we searched for the conditions of correct oxidative refolding of denatured disulfide-reduced ovalbumin. Data of trypsin resistance, CD-spectrum, and selective reactivity of cysteine sulfhydryls revealed that the fully denatured protein can refold into the native conformation under disulfide-reduced conditions. The interconversion between the native and denatured forms was fully reversible with a free energy change for unfolding of 6.6 kcal/mol at 25 degrees C. Subsequent reoxidation under a variety of redox conditions generated only one disulfide bond in the reduced refolded protein with six cysteine sulfhydryls. Furthermore, the regenerated disulfide was found by peptide analyses to correspond to the native disulfide pairing, Cys73-Cys120. We, therefore, concluded that co-translational folding, if any, is not requisite for the correct oxidative folding of ovalbumin.  相似文献   

7.
Partial assignment of disulfide pairs in neurophysins   总被引:2,自引:0,他引:2  
The original report assigning the pairing of neurophysin's 14 half-cystine residues (Schlesinger et al. (1972), Proc. Natl. Acad. Sci., U.S.A., 69,3350-3353) was based on an incorrect amino acid sequence. In the present study, re-investigation of the results of proteolytic fragmentation of bovine neurophysins indicates that the majority of the original assignments were incorrect. Three disulfide pairs are now assigned as Cys21-Cys44, Cys67-Cys85 and Cys74-Cys79. The pairing pattern indicates that neurophysin's variable carboxyl terminal region, separately encoded by the third gene exon, does not form a self-contained domain.  相似文献   

8.
Wu SP  Cowan JA 《Biochemistry》2003,42(19):5784-5791
ISA type proteins mediate cluster transfer to apoprotein targets. Rate constants have been determined for cluster transfer from Schizosaccharomyces pombe ISA to apo Fd. Substitution of the cysteine residues of ISA produced derivative proteins (C72A, C136A, and C138A) that were found to be at least as active in cluster transfer reactions as the native form at 25 degrees C (k(2) approximately 170 M(-1) min(-1) for native, k(2) approximately 169 M(-1) min(-1) for C72A, k(2) approximately 206 M(-1) min(-1) for C136A, and k(2) approximately 242 M(-1) min(-1) for C138A), although the yield of cluster transfer was found to be lower as a consequence of the enhanced lability of clusters in the derivative proteins. Minor variations in rate constant for the ISA Cys derivatives do not reflect any change in the affinity of binding to the apo Fd since k(2) was found to be independent of the concentration of apo Fd over the range of 1-25 microM. The pH dependence of cluster transfer rates was found to be similar for native and C136A ISA, with an observed pK(a) of 7.8 determined from the pH profiles for cluster transfer activity of each protein. The temperature dependence of the rate constant defining the cluster transfer reaction for the wild type versus this C136A ISA derivative is distinct (DeltaH* approximately 6.3 kcal mol(-1) and DeltaS* approximately -27.3 cal K(-1) mol(-1) for native and DeltaH* approximately 2.7 kcal mol(-1) and DeltaS* approximately -38.9 cal K(-1) mol(-1) for C136A ISA). Instability of the protein-bound cluster precluded a comparison with data from pH and temperature dependencies for the two other Cys derivatives. Experiments to determine the dependence of reaction rate constants on viscosity indicate cluster transfer is rate-limiting. A comparison of cross-species rate constants for cluster transfer to apo Fd targets from Homo sapiens and S. pombe demonstrated that the identity of the Fd is less critical for promoting cluster transfer from Sp ISA (at 25 degrees C, k(2) approximately 170 M(-1) min(-1) for Sp Fd and k(2) approximately 169 M(-1) min(-1) for Hs Fd). This contrasts with an earlier observation for ISU-mediated cluster assembly [Wu, S., et al. (2002) Biochemistry 41, 8876-8885], where the rates differed for Hs and Sp target Fd's, suggesting distinct binding sites for binding of holo ISA and ISU to apo Fd.  相似文献   

9.
Human acid sphingomyelinase (haSMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to ceramide and phosphorylcholine. An inherited haSMase deficiency leads to Niemann-Pick disease, a severe sphingolipid storage disorder. The enzyme was purified and cloned over 10 years ago. Since then, only a few structural properties of haSMase have been elucidated. For understanding of its complex functions including its role in certain signaling and apoptosis events, complete structural information about the enzyme is necessary. Here, the identification of the disulfide bond pattern of haSMase is reported for the first time. Functional recombinant enzyme expressed in SF21 cells using the baculovirus expression system was purified and digested by trypsin. MALDI-MS analysis of the resulting peptides revealed the four disulfide bonds Cys120-Cys131, Cys385-Cys431, Cys584-Cys588 and Cys594-Cys607. Two additional disulfide bonds (Cys221-Cys226 and Cys227-Cys250) which were not directly accessible by tryptic cleavage, were identified by a combination of a method of partial reduction and MALDI-PSD analysis. In the sphingolipid activator protein (SAP)-homologous N-terminal domain of haSMase, one disulfide bond was assigned as Cys120-Cys131. The existence of two additional disulfide bridges in this region was proved, as was expected for the known disulfide bond pattern of SAP-type domains. These results support the hypothesis that haSMase possesses an intramolecular SAP-type activator domain as predicted by sequence comparison [Ponting, C.P. (1994) Protein Sci., 3, 359-361]. An additional analysis of haSMase isolated from human placenta shows that the recombinant and the native human protein possess an identical disulfide structure.  相似文献   

10.
The determination of the disulfide pairings of SETI-II, a trypsin inhibitor isolated from Sechium edule, is described herein. The inhibitor contains 31 amino acid residues per mol, 6 of which are cysteine. Forty-five nmol (160 microg) of SETI-II was hydrolyzed with 20 microg thermolysin for 48 hr at 45 degrees C, and peptides were separated by reverse phase high performance liquid chromatography (RP-HPLC). The major products were identified by amino acid composition, Edman degradation, and on the basis of the sequence of the inhibitor. The disulfide bridge pairings and (yields) are: Cys1-Cys4 (79%), Cys2-Cys5 (21%) and Cys3-Cys6 (43%). When the reduced inhibitor was reoxidized with glutathione reduced form (GSH)/glutathione oxidized form (GSSG) at pH 8.5 for 3 hr, full activity was recovered. These data show that disulfide bridge pairing and oxidation can be determined at nanomole levels and that sensitive and quantitative Edman degradation can eliminate the final time- and material-consuming step of disulfide determinations by eliminating the need to purify and cleave each peptide containing a disulfide bridge.  相似文献   

11.
Robinson CR  Sauer RT 《Biochemistry》2000,39(40):12494-12502
A solvent-exposed Cys11-Cys11' disulfide bond was designed to link the antiparallel strands of the beta sheet both in the Arc repressor dimer and in a single-chain variant in which the Arc subunits are connected by a 15-residue peptide tether. In both proteins, the presence of the disulfide bond increased the T(m) by approximately 40 degrees C. In the single-chain background, the disulfide bond stabilized Arc by 8.5 kcal/mol relative to the reduced form, a significantly larger degree of stabilization than caused by other engineered disulfides and most natural disulfides. This exceptional stabilization arises from a modest effective concentration of the Cys11-Cys11' disulfide in the native state (71 M) and an anomalously low effective concentration in the denatured state (40 microM). Disulfide cross-linking of the two beta strands in the single-chain Arc background accelerated refolding by a factor of 170 into the sub-microsecond time scale. However, the major energetic effect of the disulfide occurs after the transition state for Arc refolding, slowing unfolding by 200 000-fold.  相似文献   

12.
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.  相似文献   

13.
The high affinity interleukin-6 (IL-6) receptor is a hexameric complex consisting of two molecules each of IL-6, IL-6 receptor (IL-6R), and the high affinity converter and signaling molecule, gp130. The extracellular "soluble" part of the IL-6R (sIL-6R) consists of three domains: an amino-terminal Ig-like domain and two fibronectin-type III (FN III) domains. The two FN III domains comprise the cytokine-binding domain defined by a set of 4 conserved cysteine residues and a WSXWS sequence motif. Here, we have determined the disulfide structure of the human sIL-6R by peptide mapping in the absence and presence of reducing agent. Mass spectrometric analysis of these peptides revealed four disulfide bonds and two free cysteines. The disulfides Cys102-Cys113 and Cys146-Cys157 are consistent with known cytokine-binding domain motifs, and Cys28-Cys77 with known Ig superfamily domains. An unusual cysteine connectivity between Cys6-Cys174, which links the Ig-like and NH2-terminal FN III domains causing them to fold back onto each other, has not previously been observed among cytokine receptors. The two free cysteines (Cys192 and Cys258) were detected as cysteinyl-cysteines, although a small proportion of Cys258 was reactive with the alkylating agent 4-vinylpyridine. Of the four potential N-glycosylation sites, carbohydrate moieties were identified on Asn36, Asn74, and Asn202, but not on Asn226.  相似文献   

14.
The kringle-2 domain of tissue plasminogen activator, cloned and expressed in Escherichia coli (Wilhelm, O.G., Jaskunas, S.R., Vlahos, C.J., and Bang, N.U. (1990) J. Biol. Chem. 265, 14606-14611), was internally radiolabeled using [35S]methionine-cysteine. Following refolding and isolation, the labeled polypeptide was further purified by reverse-phase high performance liquid chromatography. The purified kringle-2 domain was digested with thermolysin, and the resulting peptides were purified by high performance liquid chromatography. Five major peptides containing 35S were obtained. Amino acid sequence analysis showed that these peptides represented various cleavage products containing one or more of the following disulfides: Cys180-Cys261, Cys201-Cys243, Cys232-Cys256 (sequence numbering based on Pennica et al. (Pennica, D., Holmes, W.E., Kohr, W.J., Hakins, R.N., Vehar, G. A., Ward, C.A., Bennett, W.F., Yelverton E., Seeburg, P.H., Heynecker, H.L., Goeddel, E.V., and Collen, D. (1983) Nature 301, 214-221)). These results confirm that the refolding methodology used produced kringle-2 with the predicted disulfide linkage and, thus, yielded material suitable for structural and functional studies.  相似文献   

15.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

16.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

17.
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond.  相似文献   

18.
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is incompatible with the linear uncrossed disulfide arrangement. These results suggest that active forms of the SMB domain may have a number of allowed disulfide bond arrangements as long as the Cys(25)-Cys(31) disulfide bond is preserved.  相似文献   

19.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

20.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号