首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus zooepidemicus is a bacterial pathogen used for production of hyaluronan in industry. Intensive research has significantly contributed to our understanding of S. zooepidemicus biology and pathogenesis. However, the lack of an effective targeted gene inactivation system in S. zooepidemicus has notably prevented the functional genomics analysis of this gram-positive bacterium. Here, we report the development of a markerless gene deletion system in S. zooepidemicus. We constructed a sacB expression cassette on the thermosensitive suicide vector pSET4s and demonstrated its use as a counterselection marker in S. zooepidemicus. We validated the efficiency of this system by deletion of hasA, which synthesizes the important virulence factor hyaluronic acid (HA) capsule. The genotype of the resultant hasA mutant was confirmed by polymerase chain reaction and sequencing. Deletion of hasA resulted in non-mucoid morphology, loss of HA capsule formation, and HA production. These defects can be rescued by introduction of a plasmid containing wild-type hasA expression cassette. Moreover, compared with wild type, hasA mutant showed no significant difference in expressions of other members of the hasABCDE operon, further suggesting that the loss of hasA contributed to the defects observed with ΔhasA mutant. Our results describe the first establishment of a sacB-based counterselection system in S. zooepidemicus, along with the first demonstration of hasA that is the only gene encoding a functional hyaluronan synthase in this bacterium.  相似文献   

2.
Hyaluronic acid (HA) is used in a wide range of medical applications, where its performance and therapeutic efficacy are highly dependent on its molecular weight. In the microbial production of HA, it has been suggested that a high level of intracellular ATP enhances the productivity and molecular weight of HA. Here, we report on heterologous HA production in an ε-poly-l-lysine producer, Streptomyces albulus, which has the potential to generate ATP at high level. The hasA gene from Streptococcus zooepidemicus, which encodes HA synthase, was refactored and expressed under the control of a late-log growth phase-operating promoter. The expression of the refactored hasA gene, along with genes coding for UDP-glucose dehydrogenase, UDP-N-acetylglucosamine pyrophosphorylase, and UDP-glucose pyrophosphorylase, which are involved in HA precursor sugar biosynthesis, resulted in efficient production of HA in the 2.0 MDa range, which is greater than typical bacterial HA, demonstrating that a sufficient amount of ATP was provided to support the biosynthesis of the precursor sugars, which in turn promoted HA production. In addition, unlike in the case of streptococcal HA, S. albulus-derived HA was not cell associated. Based on these findings, our heterologous production system appears to have several advantages for practical HA production. We propose that the present system could be applicable to the heterologous production of a wide variety of molecules other than HA in the case their biosynthesis pathways require ATP in vivo.  相似文献   

3.
Hyaluronic acid (HA) production was metabolically engineered in Lactococcus lactis by introducing the HA synthetic machinery from the has operon of the pathogenic bacterium Streptococcus zooepidemicus. This study shows that the insertion of uridine diphosphate (UDP)-glucose pyrophosphorylase (hasC) gene in addition to the HA synthase (hasA) and UDP-glucose dehydrogenase (hasB) genes has a significant impact on increasing HA production. The recombinant L. lactis NZ9000 strain transformed with the plasmid pSJR2 (co-expressing hasA and hasB genes only) produced a maximum of 107 mg/l HA in static flask experiments with varying initial glucose concentrations, while the corresponding experiments with the transformant SJR3 (co-expressing hasA, hasB, and hasC genes) gave a maximum yield of 234 mg/l HA. The plasmid cloned with the insertion of the full has operon comprising of five different genes (hasA, hasB, hasC, hasD, and hasE) exhibited structural instability. The HA yield was further enhanced in batch bioreactor experiments with controlled pH and aeration, and a maximum of 1.8 g/l HA was produced by the SJR3 culture.  相似文献   

4.
Enzymes directing the biosynthesis of the group A streptococcal hyaluronic acid capsule are encoded in the hasABC gene cluster. Inactivation of hasC, encoding UDP-glucose pyrophosphorylase in the heavily encapsulated group A streptococcal strain 87-282, had no effect on capsule production, indicating that hasC is not required for hyaluronic acid synthesis and that an alternative source of UDP-glucose is available for capsule production. Nucleotide sequence and deletion mutation analysis of the 5.5 kb of DNA upstream of hasA revealed that this region is not required for capsule expression. Many (10 of 23) group A streptococcal strains were found to contain insertion element IS1239′ approximately 50 nucleotides upstream of the −35 site of the hasA promoter. The presence of IS1239′ upstream of hasA did not prevent capsule expression. These results elucidate the molecular architecture of the group A streptococcal chromosomal region upstream of the has operon, indicate that hasABC are the sole components of the capsule gene cluster, and demonstrate that hasAB are sufficient to direct capsule synthesis in group A streptococci.  相似文献   

5.
Group A Streptococcus (GAS) is a human-specific bacterial pathogen responsible for serious morbidity and mortality worldwide. The hyaluronic acid (HA) capsule of GAS is a major virulence factor, contributing to bloodstream survival through resistance to neutrophil and antimicrobial peptide killing and to in vivo pathogenicity. Capsule biosynthesis has been exclusively attributed to the ubiquitous hasABC hyaluronan synthase operon, which is highly conserved across GAS serotypes. Previous reports indicate that hasA, encoding hyaluronan synthase, and hasB, encoding UDP-glucose 6-dehydrogenase, are essential for capsule production in GAS. Here, we report that precise allelic exchange mutagenesis of hasB in GAS strain 5448, a representative of the globally disseminated M1T1 serotype, did not abolish HA capsule synthesis. In silico whole-genome screening identified a putative HasB paralog, designated HasB2, with 45% amino acid identity to HasB at a distant location in the GAS chromosome. In vitro enzymatic assays demonstrated that recombinant HasB2 is a functional UDP-glucose 6-dehydrogenase enzyme. Mutagenesis of hasB2 alone slightly decreased capsule abundance; however, a ΔhasB ΔhasB2 double mutant became completely acapsular. We conclude that HasB is not essential for M1T1 GAS capsule biogenesis due to the presence of a newly identified HasB paralog, HasB2, which most likely resulted from gene duplication. The identification of redundant UDP-glucose 6-dehydrogenases underscores the importance of HA capsule expression for M1T1 GAS pathogenicity and survival in the human host.  相似文献   

6.
Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS.  相似文献   

7.
8.
Hyaluronic acid production in Bacillus subtilis   总被引:1,自引:0,他引:1  
The hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase, has been expressed in Bacillus subtilis, resulting in the production of hyaluronic acid (HA) in the 1-MDa range. Artificial operons were assembled and tested, all of which contain the hasA gene along with one or more genes encoding enzymes involved in the synthesis of the UDP-precursor sugars that are required for HA synthesis. It was determined that the production of UDP-glucuronic acid is limiting in B. subtilis and that overexpressing the hasA gene along with the endogenous tuaD gene is sufficient for high-level production of HA. In addition, the B. subtilis-derived material was shown to be secreted and of high quality, comparable to commercially available sources of HA.  相似文献   

9.
Amidase was a crucial enzyme responsible for the conversion of acrylamide to acrylic acid in Rhodococcus erythropolis. Its coding gene ami was amplified by PCR using the genomic DNA of R. erythropolis as template. Subsequently, it was ligated to expression plasmids and transformed in Escherichia coli and Bacillus subtilis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that both recombinant E. coli BL21 (DE3) and B. subtilis generated amidase of 56 kDa. The expression mass and enzyme activity suggested that B. subtilis was more suitable as a host when ami gene was under the control of a powerful promoter. To further study the expression effect of different promoters in B. subtilis, five distinct promoters (sacB, amyE, p43, degQ, aprE) and their native signal peptide genes were employed to separately construct five different vectors harboring ami gene. Of the five novel vectors, the amyE promoter along with its native signal peptide gene was most effective. The maximum specific activity of amidase at pH 7.0 and 37 °C was about 8.7 U/mg and the conversion efficiency could approximately reach 90% within 6 h. This result indicated the expression difference of distinct promoters, which provided the basis for the forthcoming research.  相似文献   

10.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

11.
Myxococcus xanthus and Bacillus subtilis are common soil-dwelling bacteria that produce a wide range of secondary metabolites and sporulate under nutrient-limiting conditions. Both organisms affect the composition and dynamics of microbial communities in the soil. However, M. xanthus is known to be a predator, while B. subtilis is not. A screen of various prey led to the finding that M. xanthus is capable of consuming laboratory strains of B. subtilis, while the ancestral strain, NCIB3610, was resistant to predation. Based in part on recent characterization of several strains of B. subtilis, we were able to determine that the pks gene cluster, which is required for production of bacillaene, is the major factor allowing B. subtilis NCIB3610 cells to resist predation by M. xanthus. Furthermore, purified bacillaene was added exogenously to domesticated strains, resulting in resistance to predation. Lastly, we found that M. xanthus is incapable of consuming B. subtilis spores even from laboratory strains, indicating the evolutionary fitness of sporulation as a survival strategy. Together, the results suggest that bacillaene inhibits M. xanthus predation, allowing sufficient time for development of B. subtilis spores.  相似文献   

12.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

13.
Unlike Bacillus subtilis and Escherichia coli, the gram-positive lactic acid bacterium Lactococcus lactis does not possess the SecDF protein, a component of the secretion (Sec) machinery involved in late secretion stages and required for the high-capacity protein secretion in B. subtilis. In this study, we complemented the L. lactis Sec machinery with SecDF from B. subtilis and evaluated the effect on the secretion of two forms of staphylococcal nuclease, NucB and NucT, which are efficiently and poorly secreted, respectively. The B. subtilis SecDF-encoding gene was tested in L. lactis at different levels. Increased quantities of the precursor and mature forms were observed only at low levels of SecDF and at high NucT production levels. This SecDF secretion enhancement was observed at the optimal growth temperature (30°C) and was even greater at 15°C. Furthermore, the introduction of B. subtilis SecDF into L. lactis was shown to have a positive effect on a secreted form of Brucella abortus L7/L12 antigen.  相似文献   

14.
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from “Tua Nao” of Thailand traces a different evolutionary process from other strains.  相似文献   

15.
Extracellular DNA (eDNA) release is a widespread capacity described in many microorganisms. We identified and characterized lysis-independent eDNA production in an undomesticated strain of Bacillus subtilis. DNA fragments are released during a short time in late-exponential phase. The released eDNA corresponds to whole genome DNA, and does not harbour mutations suggesting that is not the result of error prone DNA synthesis. The absence of eDNA was linked to a spread colony morphology, which allowed a visual screening of a transposon library to search for genes involved in its production. Transposon insertions in genes related to quorum sensing and competence (oppA, oppF and comXP) and to DNA metabolism (mfd and topA) were impaired in eDNA release. Mutants in early competence genes such as comA and srfAA were also defective in eDNA while in contrast mutations in late competence genes as those for the DNA uptake machinery had no effect. A subpopulation of cells containing more DNA is present in the eDNA producing strains but absent from the eDNA defective strain. Finally, competent B. subtilis cells can be transformed by eDNA suggesting it could be used in horizontal gene transfer and providing a rationale for the molecular link between eDNA release and early-competence in B. subtilis that we report.  相似文献   

16.
Despite its utility, dipeptides have not been widely used due to the absence of an efficient manufacturing method. Recently, a novel method for effective production of dipeptides using l-amino acid α-ligase (Lal) is presented. Lal, which is only identified in Bacillus subtilis, catalyzes dipeptide synthesis from unprotected amino acids in an ATP-dependent manner. However, not all the dipeptide can be synthesized by Lal from B. subtilis (BsLal) due to its substrate specificity. Here, we attempted to find a novel Lal exhibiting different substrate specificity from BsLal. By in silico screening based on the amino acid sequence of BsLal, RSp1486a an unknown protein from Ralstonia solanacearum was found to show the Lal activity. RSp1486a exhibited different substrate specificity from BsLal, and preferably synthesized hetero-dipeptides where more bulky amino acid was placed at N terminus and less bulky amino acid was placed at C terminus in opposition to those synthesized by BsLal.  相似文献   

17.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80°C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

18.
A plasmid is described for Bacillus subtilis that facilitates replacement of the widely used neomycin resistance gene (neo) with a spectinomycin resistance (spcE) gene. A second plasmid is described that facilitates replacement of spcS, associated with mini-Tn10 mutagenesis in B. subtilis, with neo. These plasmids can also function as integrative vectors for B. subtilis. They expand the scope of strain construction and gene analysis in B. subtilis.  相似文献   

19.
20.
5-Methyltetrahydrofolate (5-MTHF) is the major form of folate in human plasma and is the only folate form that can penetrate the blood–brain barrier. It has been widely used for the prevention and treatment of various diseases. It is mainly produced by chemical synthesis. However, the low production rate cannot meet the increasing demand. In addition, chemical synthesis is potentially detrimental to the environment. Despite various microorganisms synthetizing 5-MTHF, an efficient 5-MTHF bioproduction approach is lacking because of the tight regulation of the 5-MTHF pathway and limited metabolic flux toward the folic acid pathway. In this study, the 5-MTHF synthetic pathway in Bacillus subtilis was systematically engineered to realize 5-MTHF accumulation and further improve 5-MTHF production. Specifically, the 5-MTHF synthesis pathway with dihydrofolate (DHF) as the precursor was strengthened to shift the metabolic flux to 5-MTHF biosynthesis by replacing the native yitJ gene with Escherichia coli metF, knockout of purU, and overexpressing dfrA. The intracellular level of 5-MTHF increased 26.4-fold, reaching 271.64 µg/L. Next, the 5-MTHF precursor supply pathway was strengthened by co-overexpression of folC, pabB, folE, and yciA. This resulted in a 93.2-fold improvement of the 5-MTHF titer, which reached 960.27 µg/L. Finally, the clustered regularly interspaced short palindromic repeats interference system was used to identify key genes in the competitive and catabolic pathways for repression to further shift the metabolic flux toward 5-MTHF biosynthesis. The repression of genes thyA (existing in the purine metabolic pathway), pheA (existing in the competitive metabolic pathway), trpE (existing in the competitive metabolic pathway), and panB (existing in the pantoate synthesis pathway) significantly increased the titer of 5-MTHF. By repressing the pheA gene, the 5-MTHF titer reached 1.58 mg/L, which was 153.8-fold that of the wild-type strain of B. subtilis 168. Through medium optimization, the 5-MTHF titer reached 1.78 mg/L, which was currently the highest titer of 5-MTHF in B. subtilis. Apart from the highest titer of 5-MTHF, the highest titer of total folates including 5-MTHF, 5-FTHF, folic acid, and THF could reach 3.31 mg/L, which was 8.5-fold that in B. subtilis. To the best of our knowledge, the 5-MTHF and total folate titers reported here are the highest using a Generally regarded as safe (GRAS) bacterium as the production host. Overall, this study provides a good starting point for further metabolic engineering to achieve efficient biosynthesis of 5-MTHF by GRAS bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号