首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetraploid Paspalum notatum (bahiagrass) is a valuable forage grass with aposporous apomictic reproduction. In a previous study, we showed that apospory in bahiagrass is under the control of a single dominant gene with a distorted segregation ratio. The objective of this work was to identify molecular markers linked to apospory in tetraploid P. notatum and establish a preliminary syntenic relationship with the genomic region associated with apospory in P. simplex. A F1 population of 290 individuals, segregating for apospory, was generated after crossing a completely sexual plant (Q4188) with a natural aposporous apomictic plant (Q4117). The whole progeny was classified as sexual or aposporous by embryo sacs analysis. A bulked segregant analysis was carried out to identify molecular markers co-segregating with apospory. Four hundred RAPD primers, 30 AFLP primers combinations and 85 RFLP clones were screened using DNA from both parental genotypes and aposporous and sexual bulks. Linkage analysis was performed with cytological and genetic information from the complete progeny. Cytoembryological analysis showed 219 sexual and 71 aposporous F1 individuals. Seven different molecular markers (2 RAPD, 4 AFLP and 1 RFLP) were found to be completely linked to apospory. The RFLP probe C1069, mapping to the telomeric region of the long arm of rice chromosome 12, was one of the molecular markers completely linked to apospory in P. notatum. This marker had been previously associated with apospory in P. simplex. A preliminary map of the chromosome region carrying the apospory locus was constructed.  相似文献   

2.
Tetraploid (2n = 4x = 40) races of Paspalum notatum Flüggé are important natural forage grasses for the tropical and subtropical areas of the Americas. Almost all natural accessions reproduce by obligate aposporous apomixis. Previous work on the species allowed the identification of several molecular markers completely linked to apospory, one component of apomictic reproduction. Moreover, after a fingerprinting characterization of a germplasm collection, 11 amplified fragment length polymorphism (AFLP) markers exclusive to apomictic accessions were detected. The objectives of this work were (1) to validate the presence of molecular markers linked to apospory in tetraploid races of different geographic origins, (2) to determine if markers specific to apomictic accessions were associated with the mode of reproduction, and (3) to develop single-locus markers of apospory that can be used for marker-assisted selection. Thirteen natural apomictic accessions were analyzed. Moreover, the parental plants Q4188 (non-aposporous) and Q4117 (aposporous) and 44 F1 progenies (36 non-aposporous, 8 aposporous) derived from them were used as a validation population. Nine markers [two random amplification of polymorphic DNA (RAPD) and seven AFLP] 100% linked to apospory in Q4117 were tested. Amplification reactions with the corresponding primers showed that all markers were present in the 13 aposporous (apomictic) accessions, but were absent in the non-aposporous controls. On the other hand, linkage analysis of the 11 AFLP markers specific to the apomictic accessions showed that all of them were linked in coupling to apospory (r = 0.00, LOD 13.245). Based on one AFLP (E36M37c), two sequence characterized amplification region (SCAR) markers (SPNA1 and SPNA2) co-segregating with the trait and present in the 13 apomictic accessions were developed. The presence of markers associated with apospory was conserved among tetraploid accessions of different geographic origins. Moreover, the single-locus markers SPNA1 and SPNA2 could be used for routine marker-assisted selection in hybrid populations segregating for apospory and to facilitate the isolation of apospory-related genes.  相似文献   

3.
In plants, gametophytic apomixis is a form of asexual reproduction that leads to the formation of seed-derived offspring that are genetically identical to the mother plant. A common set of RFLP markers, including five rice anchor markers previously shown to be linked to apomixis in Paspalum simplex, were used to detect linkage with apomixis in P. notatum and P. malacophyllum. A comparative map of the region around the apomixis locus was constructed for the three Paspalum species, and compared to the rice map. The locus that controls apomixis in P. simplex was almost completely conserved in the closely related species P. malacophyllum, whereas it was only partially represented in the distantly related species P. notatum. Although strong synteny of markers was noted between this locus and a portion of rice chromosome 12 in both P. simplex and P. malacophyllum, the same locus in P. notatum was localized to a hybrid chromosome which carries markers that map to rice chromosomes 2 and 12. All three Paspalum species showed recombination suppression at the apomixis locus; in the case of P. notatum, this might be due to a heterozygosity for a translocation that most probably negatively interferes with chromosomal pairing near the locus. A common set of markers that show linkage with apomixis in all three Paspalum species define a portion of the apomixis-controlling locus that is likely to contain genes critical for apomictic reproduction.Communicated by R. Hagemann  相似文献   

4.
Identification of a maize linkage group related to apomixis in Brachiaria   总被引:3,自引:0,他引:3  
 A bulked segregant analysis using RFLPs and RAPDs was carried out to identify molecular markers co-segregating with apomixis in a Brachiaria F1 population. The test population used was a cross between sexual B. ruziziensis R44 and the aposporous apomictic Brachiaria brizantha cv Marandu. The Brachiaria genome was systematically scanned using 61 cDNA and genomic maize clones detecting 65 loci located at 40 cM, on average, one from each other in the maize genome. The finding of a clone that presented a polymorphic band co-segregating with apomixis (umc147) led to the identification of another marker within the same area (umc72). The clones belong to a duplicated linkage group that maps to the distal part of maize chromosome-1 long arm and chromosome-5 short arm. RAPD analysis using 184 primers from Operon sets yielded one more marker (OPC4) significantly linked to the trait mapping the same locus. OPC4 had been previously reported as a potential marker for apospory in Pennisetum. A map of the region was constructed using additional clones that belong to the same maize linkage group. Since that was the only genomic region that presented an apomixis-linked polymorphism our observations support the existence of a single locus directing apospory in Brachiaria. Received: 9 September 1996 / Accepted: 20 September 1996  相似文献   

5.
Since apomixis was first mapped in Paspalum, the absence of recombination that characterizes the related locus appeared to be the most difficult bottleneck to overcome for the dissection of the genetic determinants that control this trait. An approach to break the block of recombination was developed in this genus through an among-species comparative mapping strategy. A new apomictic species, P. procurrens (Q4094) was crossed with a sexual plant of P. simplex and their progeny was classified for reproductive mode with the aid of morphological, embryological and genetic analyses. On this progeny, a set of heterologous rice RFLP markers strictly co-segregating in coupling phase with apomixis was identified. These markers were all located on the telomeric region of the long arm of the chromosome 12 of rice. In spite of the lack of recombination exhibited by the apomixis-linked markers in P. procurrens, a comparative mapping analysis among P. simplex, P. malacophyllum, P. notatum and P. procurrens, allowed us to identify a small group of markers co-segregating with apomixis in all these species. These markers bracketed a chromosome region that likely contains all the genetic determinants of apomictic reproduction in Paspalum. The implications of this new inter-specific approach for overcoming the block of recombination to isolate the genetic determinants of apomixis and gain a better comprehension of genome structure of apomictic chromosome region are discussed.  相似文献   

6.
 Moving gene(s) responsible for the apomictic trait into crop plants that naturally reproduce through a sexual process would open up new areas in plant breeding and agricultural systems. Kentucky bluegrass (Poa pratensis L.) is one of the most important forage and turf grasses in temperate climates. It reproduces through facultative aposporous parthenogenesis, but the reproductive behaviour ranges naturally from nearly obligate apomixis to complete sexuality. In addition to apomictic reproduction, sexual hybridization may take place. Selfing may also occur, and occasionally reduced egg cells may develop through parthenogenesis generating (poly)haploids. The inheritance of parental genomes was assessed in Kentucky bluegrass progenies by employing RAPD markers in combination with flow cytometry (FCM). Nine progenies from different crosses carried out between completely sexual and highly apomictic genotypes were evaluated in order to probe the reproductive behaviour of the mother plants and to distinguish the different classes of aberrant plants. Not only were maternals and balanced BII hybrids recorded, but so were (poly)triploid BIII hybrids, selfs, and (poly)haploids. The application of these techniques demonstrated that FCM analysis accurately distinguishes the n, 2n, and 3n ploidy levels of progenies, and that RAPD markers unequivocally recognize progenies of apomictic and hybrid origin. The occurrence of aneusomaty was documented in one of the selected sexual genotypes, whose crossed progeny plants manifested two distinct classes of ploidy. The nomenclature BI was adopted to refer to hybrids with a hypodiploid nuclear condition. On the whole, the FCM analysis confirmed most of the RAPD data. The combined evaluation of DNA markers and DNA contents proved to be an efficient screening tool for scoring maternal plants, assessing the genetic origin of aberrant plants, and quantifying the inheritance of parental genomes in Kentucky bluegrass. Hybrid populations from sexual×apomictic matings that segregate for the mode of reproduction represent a valuable basis for attempting to identify molecular markers linked to the apomixis gene(s). Received: 11 November 1996/Accepted: 22 November 1996  相似文献   

7.
 It is generally accepted that most angiosperms require an accurate balance between maternal and paternal genome contribution for endosperm development. The endosperm balance number (EBN) hypothesis postulates that each species has an effective number which must be in a 2:1 maternal to paternal ratio for normal endosperm development and seed formation. The aim of this work was to investigate the effect of different sources and ploidy levels of pollen donors on endosperm formation and seed production of aposporous tetraploid (2n=4×=40) Paspalum notatum. Hand-emasculated spikelets of an apomictic 4× plant were dusted with pollen of 2×, 4×, 5×, 6× and 8× races of the same species; 3× and 4× races of a phylogenetically closely related species, P. cromyorrhizon; and 2× and 4× races of P. simplex, a species of a different subgenus. Experiments including self-pollination as well as emasculation without pollination were conducted for controls. Results indicated that apomictic 4×P. notatum is a pseudogamous species with effective fertilization of the two unreduced (2n) polar nuclei by a reduced (n) sperm. Endosperm development and seed production occurred independently of the species or the ploidy level of the pollen donor. However, seed germination rates were significantly lower than in the self-pollinated control when the pollen donor was 3×P. cromyorrhizon or 2× and 4×P. simplex. Aposporous embryo sacs in Paspalum contribute to endosperm formation with two unreduced (2n) polar nuclei, while the male contribution is the same as in sexual plants (n). Since sexual Paspalum plants fit the EBN hypothesis, the EBN insensitivity observed in apomictic plants might be a prerequisite for the spread of pseudogamous apomixis. The EBN insensitivity could have arisen as an imprinting consequence of a high maternal genome contribution. Received: 20 February 1998 / Revision accepted: 21 October 1998  相似文献   

8.
Paspalum notatum is a subtropical grass widely distributed in the temperate areas of America. Diploids are sexual while polyploids give rise to clonal seeds through aposporous apomixis. RAPD markers were used to analyze the genetic structure of three natural populations: i) diploids reproducing sexually (R2X); ii) sympatric apomictic tetraploids collected in the vicinity of the diploids (R4X); iii) allopatric apomictic tetraploids growing in isolation (C4X). The apomictic reproduction rate was evaluated by the use of molecular markers in progeny tests, while chromosome-counting allowed the verification of ploidy levels. Data revealed that the R4X group presented a variation considerably higher than that observed for C4X. Jaccards coefficients were used to produce a cluster diagram using the UPGMA method. All but one tetraploid genotypes grouped together and were associated to diploid genotype A21. The possibility of occasional generation of novel tetraploid clones from the interaction between tetraploid and diploid individuals is discussed.  相似文献   

9.
 Gametophytic apomixis in Kentucky bluegrass (Poa pratensis L.) involves the parthenogenetic development of unreduced eggs from aposporic embryo sacs. Attempts to transfer the apomictic trait beyond natural sexual barriers require further elucidation of its inheritance. Controlled crosses were made between sexual clones and apomictic genotypes, and the parthenogenetic capacity of (poly)diploid hybrids was ascertained by the auxin test. A bulked segregant analysis with RAPD and AFLP markers was then used to identify a genetic linkage group related to the apomictic mode of reproduction. This approach enabled us to detect both an AFLP marker located 6.6 cM from the gene that putatively controls parthenogenesis and a 15.4-cM genomic window surrounding the target locus. A map of the P. pratensis chromosome region carrying the gene of interest was constructed using additional RAPD and AFLP markers that co-segregated with the parthenogenesis locus. Highly significant linkage between parthenogenesis and a number of AFLP markers that also appeared to belong to a tight linkage block strengthens the hypothesis of monogenic inheritance of this trait. If a single gene is assumed, apomictic polyploid types of P. pratensis would be simplex for a dominant allele that confers parthenogenesis, and this genetic model would be further supported by the bimodal distribution of the degree of parthenogenesis exhibited in the (poly)diploid progenies from sexual x apomictic matings. The molecular tagging of apomixis in P. pratensis is an essential step towards marker-assisted breeding and map-based cloning strategies aimed at investigating and manipulating its mode of reproduction. Received: 13 January 1998 / Accepted: 19 January 1998  相似文献   

10.
Paspalum notatum Flügge is a warm-season forage grass with mainly diploid (2n = 20) and autotetraploid (2n = 40) representatives. Diploid races reproduce sexually and require crosspollination due to a self-incompatible mating system, while autotetraploids reproduce by aposporous apomixis. The objectives of this work were to develop a genetic linkage map of Paspalum notatum Flügge at the tetraploid level, identify the linkage/s group/s associated with apomixis and carry out a general characterization of its mode of inheritance. A pseudo test-cross F1 family of 113 individuals segregating for the mode of reproduction was obtained by crossing a synthetic completely sexual tetraploid plant (Q4188) as female parent with a natural aposporous individual (Q4117) as pollen donor. Map construction was based on single-dose markers (SDAFs) segregating from both parents. Two linkage maps (female and male) were constructed. Within each map, homologous groups were assembled by detecting repulsion-phase linked SDAFs. Putative Q4188 and Q4117 homolog groups were identified by mapping shared single dose markers (BSDF). The Q4188 map consisted of 263 markers distributed on 26 co-segregation groups over a total genetic distance of 1.590.6 cM, while the Q4117 map contained 216 loci dispersed on 39 co-segregation groups along 2.265.7 cM, giving an estimated genome coverage of 88% and 83%, respectively. Seven and 12 putative homologous chromosomes were detected within Q4188 and Q4117 maps, respectively. Afterward, ten female and male homologous chromosomes were identified by mapping BSDFs. In the Q4117 map, a single linkage group was associated with apospory. It was characterized by restriction in recombination and preferential chromosome pairing. A BPSD marker mapping within this group allowed the detection of the female homolog and the putative four male groups of the set carrying apospory.  相似文献   

11.
Gametophytic apomixis in Kentucky bluegrass (Poa pratensis L.) involves the parthenogenetic development of unreduced eggs from aposporic embryo sacs. Marker-assisted selection for the mode of reproduction in P. pratensis would avoid costly and time-consuming phenotypic progeny tests. We developed and tested two SCAR primer pairs that are associated with the mode of reproduction in P. pratensis. The SCAR primers identified the apomictic and sexual genotypes among progenies of sexual x apomictic crosses with very low bias. Furthermore, when tested on a wide range of Italian and exotic P. pratensis germplasm, they were able to unequivocally distinguish sexual from apomictic genotypes. This system should, therefore, allow new selection models to be set up in this species.  相似文献   

12.
RAPD markers for constructing intraspecific tomato genetic maps   总被引:8,自引:0,他引:8  
The existing molecular genetic maps of the tomato, Lycopersicon spp, are constructed based on isozyme and RFLP polymorphisms between tomato species. These maps are useful for certain applications but have few markers that exhibit sufficient polymorphisms for intraspecific analysis and manipulations within the cultivated tomato. The purpose of this study was to investigate the relative potential of RAPD technology, as compared to isozymes and RFLPs, to generate polymorphic DNA markers within cultivated tomatoes. Sixteen isozymes and 25 RFLP clones that were known to detect polymorphism between L. esculentum and L. pennellii, and 313 random oligonucleotide primers were examined. None of the isozymes and only four of the RFLP clones (i.e., 16%) revealed polymorphism between the cultivated varieties whereas up to 63% of the RAPD primers detected one or more polymorphic DNA fragments between these varieties. All RAPD primers detected polymorphism between L. esculentum and L. pennellii genotypes. These results clearly indicate that RAPD technology can generate sufficient genetic markers exploiting sequence differences within cultivated tomatoes to facilitate construction of intraspecific genetic maps.Abbreviations RFLP restriction fragments length polymorphism - RAPD random amplified polymorphic DNA - PCR polymerase chain reaction - QTLs quantitative trait loci  相似文献   

13.
Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).  相似文献   

14.
15.
Gametophytic apomixis is an asexual mode of reproduction by seeds. This trait is present in several plant families and is strongly associated with polyploidy. Paspalum rufum is a forage grass with sexual self-incompatible diploids (2n = 2x = 20) and aposporous-apomictic pseudogamous tetraploids (2n = 4x = 40). In previous work embryological observations of the diploid genotype Q3754 showed 8.8–26.8% of the ovaries having one meiotic plus an aposporous-like embryo sac, suggesting some capability for apomictic reproduction. The objective of this work was to characterize progenies derived from Q3754 to determine if aposporous sacs were functional and generated progenies via apomixis at the diploid level. Re-examination of Q3754 ovaries showed that 12.5% of them contained one sexual plus an aposporous sac confirming previous results. Progeny tests were carried out on two experimental families (H1 and S1) employing heterozygous RAPD marker loci. Family H1 was obtained crossing Q3754 with a natural diploid genotype (Q3861) and S1 derived from the induced self-pollination of Q3754. Genetic analysis of H1 showed that all individuals derived from sexual reproduction. However, 5 out of 95 plants from S1 showed the same heterozygous state as the mother plant for 14 RAPD loci suggesting a clonal origin. Further experiments, designed to test the functionality of aposporous sacs by flow cytometric analyses, were carried out on a third family (M1) obtained by crossing Q3754 with the tetraploid plant Q3785. Histograms of 20 M1 plants showed 15 diploids (75%), 4 triploids (20%) and 1 tetraploid (5%). Triploids and the tetraploid may have originated from functional aposporous embryo sacs. Likewise, the reconstruction of the developmental route of 40 individual seeds demonstrated that 11 of them (27.5%) derived from fertilized aposporic sacs. The results presented in this work indicate that gametophytic apomixis is effectively expressed at the diploid level in Paspalum rufum and could be the foundation of a recurrent auto-polyploidization process in the species.  相似文献   

16.
Recent interest in breeding strategies for Hypericum perforatum L. requires a better understanding of the floral biology of this medicinal plant. The aim of the present study was to check, whether RAPD fingerprinting may be a useful tool for research on the mode of reproduction of this species. Progenies from three defined single plants of two accessions, as well as progenies from a random sample of seeds of a wild population, of H. perforatum were characterized by RAPD analyses using six primers. The results obtained by DNA fingerprints indicate the predominance of an identical mode of reproduction for this species, obviously due to apomixis. Nevertheless, non-identical reproduction was evident as a minor effect in H. perforatum, as could be demonstrated by significant deviations in the RAPD fingerprints of progenies from one single plant. It is concluded that RAPD fingerprint analysis is a suitable technique to discover identity or non-identity in H. perforatum populations. Therefore, RAPDs may be used in addition to cytological studies to confirm the mode of reproduction by apomixis versus self-pollination, haploid parthenogenesis or cross-fertilization. Received: 12. August 1999 / Accepted: 27 August 1999  相似文献   

17.
Isozymes and random amplified polymorphic DNA (RAPD) markers were used for precocious identification of non-maternal plants in progenies of the facultative apomict Poa pratensis. Four progenies obtained from controlled crosses that showed different degrees of apomixis on isozyme analysis of phospho-gluco-isomerases, esterases and peroxidases were chosen for RAPD analysis to generate genomic fingerprints using species-specific primers. At an advanced vegetative stage, a morphological analysis was also performed and characteristics related to growth habit and leaf morphology were observed and recorded. On the basis of the isozyme and RAPD electrophoretic pattern and the morphological appearance, each plant was classified as maternal or aberrant. All three classes of genetic markers employed were able to identify plants that exhibited aberrant traits in the four progenies. Overall, the results of RAPD analysis supported those of isozyme and morphology studies. However, in each progeny, some plants which both isozyme and morphological analyses distinguished as of maternal origin were aberrant according to RAPD analysis. Therefore, the RAPD method proved the most precise screening technique. The greater cost of the molecular approach was offset by its higher accuracy. The use of either three isozyme systems or six primers for PCR amplification seems to be sufficient for reliable estimation of the degree of apomixis. Histological analyses were carried out and the aposporic development of the plant material studied.  相似文献   

18.
A linkage map for coffee (Coffea canephora P.) totalling 1402 cM has been developed on the basis of a population of doubled haploids. Both RFLP markers and PCR-based markers (RAPD) were used to construct 15 linkage groups. Coffee genomic and cDNA clones provided the source of the probes. In total, 47 RFLP and 100 RAPD loci have been placed on the linkage map. A rather low DNA polymorphism rate (18% for RFLP markers and 29% for RAPD primers) was detected. Only 81% of RAPD markers and 85% of RFLP markers fit an expected 11 ratio (P<0.01). The availability of a molecular linkage map has many implications for the future development of the genetics and breeding of this commercially important crop species.  相似文献   

19.
Paspalum notatum Flügge is a warm-season forage grass with sexual diploid and apomictic tetraploid races. Genetic improvement was achieved in out-breeding diploids. The acquisition of artificial sexual tetraploids has raised the possibility of performing crosses and plant improvement at the tetraploid level. The objective of our study was to obtain a genetic and cytoembryological characterization of a germplasm collection of P. notatum, including 31 accessions from seven countries of America and 11 experimentally obtained genotypes. Morphology of mature gametophytes was observed to assess the mode of reproduction of the accessions. A total of 1342 AFLP fragments were generated across the 42 genotypes and from two reference taxa: P. urvillei and P. procurrens. AFLP data were converted into a binary matrix and similarity relationships were established. The genetic distance among all the accessions showed a maximum value of 0.36. In addition, eleven AFLP fragments were observed exclusively in apomictic plants, which could be linked to genomic regions implicated in the control of apospory.  相似文献   

20.
Summary Apomixis, asexual reproduction through seed, is an obligate mode of reproduction in several species from the genus Pennisetum. Transfer of apomixis to sexual, cultivated pearl millet (P. glaucum) from a wild species P. squamulatum has resulted in an obligate apomictic backcross line with a low, but unknown number, of chromosomes from the wild species. Molecular markers (restriction fragment length polymorphisms and random amplified polymorphic DNAs) have been identified that unequivocally demonstrate the presence of P. squamulatum DNA in BC3. Three of the informative RFLP clones have been sequenced and converted to sequence-tagged sites that can be amplified by the polymerase chain reaction. Molecular genetic analysis of more advanced back-cross individuals, using the two types of polymerase chain reaction-based molecular markers, has demonstrated co-inheritance of apomictic reproduction and two of the molecular markers. The remaining five molecular markers generally co-segregate with each other but are not linked with the mode of reproduction. These results suggest that genes for apomixis apparently can be transmitted by a single chromosome. Chromosome-specific markers will provide a starting point for the mapping of this genetically intractable reproductive trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号