共查询到20条相似文献,搜索用时 15 毫秒
1.
ExbB and ExbD proteins are part of the TonB-dependent energy transduction system and are encoded by the exb operon in Escherichia coli. TonB, the energy transducer, appears to go through a cycle during energy transduction, with the absence of both ExbB and ExbD creating blocks at two points: (i) in the inability of TonB to respond to the cytoplasmic membrane proton motive force and (ii) in the conversion of TonB from a high-affinity outer membrane association to a high-affinity cytoplasmic membrane association. The recent observation that ExbB exists in 3.5-fold molar excess relative to the molarity of ExbD in E. coli suggests the possibility of two types of complexes, those containing both ExbB and ExbD and those containing only ExbB. Such distinct complexes might individually manifest one of the two activities described above. In the present study this hypothesis was tested and rejected. Specifically, both ExbB and ExbD were found to be required for TonB to conformationally respond to proton motive force. Both ExbB and ExbD were also required for association of TonB with the cytoplasmic membrane. Together, these results support an alternative model where all of the ExbB in the cell occurs in complex with all of the ExbD in the cell. Based on recently determined cellular ratios of TonB system proteins, these results suggest the existence of a cytoplasmic membrane complex that may be as large as 520 kDa. 相似文献
2.
The TonB system of Gram-negative bacteria provides passage across the outer membrane (OM) diffusion barrier that otherwise limits access to large, scarce, or important nutrients. In Escherichia coli, the integral cytoplasmic membrane (CM) proteins TonB, ExbB, and ExbD couple the CM proton motive force (PMF) to active transport of iron-siderophore complexes and vitamin B(12) across the OM through high-affinity transporters. ExbB is an integral CM protein with three transmembrane domains. The majority of ExbB occupies the cytoplasm. Here, the importance of the cytoplasmic ExbB carboxy terminus (residues 195 to 244) was evaluated by cysteine scanning mutagenesis. D211C and some of the substitutions nearest the carboxy terminus spontaneously formed disulfide cross-links, even though the cytoplasm is a reducing environment. ExbB N196C and D211C substitutions were converted to Ala substitutions to stabilize them. Only N196A, D211A, A228C, and G244C substitutions significantly decreased ExbB activity. With the exception of ExbB(G244C), all of the substituted forms were dominant. Like wild-type ExbB, they all formed a formaldehyde cross-linked tetramer, as well as a tetramer cross-linked to an unidentified protein(s). In addition, they could be formaldehyde cross-linked to ExbD and TonB. Taken together, the data suggested that they assembled normally. Three of four ExbB mutants were defective in supporting both the PMF-dependent formaldehyde cross-link between the periplasmic domains of TonB and ExbD and the proteinase K-resistant conformation of TonB. Thus, mutations in a cytoplasmic region of ExbB prevented a periplasmic event and constituted evidence for signal transduction from cytoplasm to periplasm in the TonB system. 相似文献
3.
4.
Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity.
下载免费PDF全文

V Braun S Gaisser C Herrmann K Kampfenkel H Killmann I Traub 《Journal of bacteriology》1996,178(10):2836-2845
Ferric siderophores, vitamin B12, and group B colicins are taken up through the outer membranes of Escherichia coli cells by an energy-coupled process. Energy from the cytoplasmic membrane is transferred to the outer membrane with the aid of the Ton system, consisting of the proteins TonB, ExbB, and ExbD. In this paper we describe two point mutations which inactivate ExbD. One mutation close to the N-terminal end of ExbD is located in the cytoplasmic membrane, and the other mutation close to the C-terminal end is located in the periplasm. E. coli CHO3, carrying a chromosomal exbD mutation in which leucine at position 132 was replaced by glutamine, was devoid of all Ton-related activities. A plasmid-encoded ExbD derivative, in which aspartate at position 25, the only changed amino acid in the predicted membrane-spanning region of ExbD, was replaced by asparagine, failed to restore the Ton activities of strain CHO3 and negatively complemented ExbD+ strains, indicating an interaction of this mutated ExbD with wild-type ExbD or with another component. This component was shown to be ExbB. ExbB that was labeled with 6 histidine residues at its C-terminal end and that bound to a nickel-nitrilotriacetic acid agarose column retained ExbD and TonB specifically; both were eluted with the ExbB labeled with 6 histidine residues, demonstrating interaction of ExbB with ExbD and TonB. These data further support the concept that TonB, ExbB, and ExbD form a complex in which the energized conformation of TonB opens the channels in the outer membrane receptor proteins. 相似文献
5.
A. D. Vinogradov 《Biochemistry. Biokhimii?a》2001,66(10):1086-1097
Structural arrangements and properties of redox components of the mitochondrial and bacterial proton-translocating NADH:quinone oxidoreductases are briefly described. A model for the mechanism of proton translocation at first coupling site, which emphasizes participation of specifically Complex I-associated ubisemiquinones, is discussed. An alternative mechanism is proposed where all redox reactions take place in a hydrophilic part of the enzyme and the free energy accumulated as conformational constraint drives the proton pump associated with the hydrophobic polypeptides. 相似文献
6.
Zippers Make Signals: NCAM-mediated Molecular Interactions and Signal Transduction 总被引:11,自引:0,他引:11
The neural cell adhesion molecule, NCAM, is involved in multiple cis- and trans-homophilic interactions (NCAM binding to NCAM) thereby facilitating cell–cell adhesion through the formation of zipper-like NCAM-complexes. NCAM is also involved in heterophilic interactions with a number of proteins and extracellular matrix molecules. Some of these heterophilic interactions are mutually exclusive, and some interfere with or are dependent on homophilic NCAM interactions. Furthermore, both homo- and heterophilic interactions are modulated by posttranslational modifications of NCAM. Heterophilic NCAM-interactions initiate several intracellular signal transduction pathways ultimately leading to biological responses involving cellular differentiation, proliferation, migration and survival. Both homo- and heterophilic NCAM-interactions can be mimicked by synthetic peptides, which can induce NCAM-like signalling, and in vitroand in vivo studies suggest that such NCAM mimetics may be used for the treatment of neurodegenerative disorders.Special issue dedicated to Lawrence F. Eng. 相似文献
7.
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway. 相似文献
8.
Zachary Klase Laurent Houzet Kuan-Teh Jeang 《The Journal of biological chemistry》2012,287(49):40884-40890
RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed. 相似文献
9.
10.
The TonB system couples cytoplasmic membrane proton motive force to TonB-gated outer membrane transporters for active transport of nutrients into the periplasm. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD promote conformational changes in TonB, which transmits this energy to the transporters. The only known energy-dependent interaction occurs between the periplasmic domains of TonB and ExbD. This study identified sites of in vivo homodimeric interactions within ExbD periplasmic domain residues 92 to 121. ExbD was active as a homodimer (ExbD(2)) but not through all Cys substitution sites, suggesting the existence of conformationally dynamic regions in the ExbD periplasmic domain. A subset of homodimeric interactions could not be modeled on the nuclear magnetic resonance (NMR) structure without significant distortion. Most importantly, the majority of ExbD Cys substitutions that mediated homodimer formation also mediated ExbD-TonB heterodimer formation with TonB A150C. Consistent with the implied competition, ExbD homodimer formation increased in the absence of TonB. Although ExbD D25 was not required for their formation, ExbD dimers interacted in vivo with ExbB. ExbD-TonB interactions required ExbD transmembrane domain residue D25. These results suggested a model where ExbD(2) assembled with ExbB undergoes a transmembrane domain-dependent transition and exchanges partners in localized homodimeric interfaces to form an ExbD(2)-TonB heterotrimer. The findings here were also consistent with our previous hypothesis that ExbD guides the conformation of the TonB periplasmic domain, which itself is conformationally dynamic. 相似文献
11.
Purpose
Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina.Methods
Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software.Results
We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor.Conclusions
Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics. 相似文献12.
13.
A wide range of experimental data characterizing propertiesof individual salamander retinal cells and synaptic interactionsare integrated to form a quantitative computational model of visual function in the salamander retina.The model is used to show how specific interactions between neuronsand between networks of neurons can lead to the integratedresponse behavior of individual cells deep in the retina. Themodel is also used to illustrate how the representation of movingand stationary stimuli is encoded in a series of layer-by-layertransformations leading to the final retinal output at the ganglioncell layer. 相似文献
14.
Previous reports demonstrated that monocarboxylate transporter-1 (MCT1) interacts with Basigin. It was hypothesized that the two proteins interact via the transmembrane domain of Basigin, specifically through the glutamate residue within the domain. We therefore sought to test this hypothesis and determine which amino acids of the Basigin protein are necessary for the interaction with MCT1. Probes consisting of the full-length putative transmembrane domain, as well as small regions of the domain, were generated for use in ELISA binding assays using endogenous mouse MCT1. Site directed mutagenesis of candidate residues was performed and probes were generated for ELISA analyses to determine the specific residues involved. The data suggest that hydrophobic residues at the N- and C-termini of the putative transmembrane domain of Basigin interact with MCT1, but the glutamate plays no role. The previously proposed hypothesis is partially correct, in that the putative transmembrane domain of Basigin does interact with MCT1. 相似文献
15.
16.
Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction
Kerry L. Inder Chiyan Lau Dorothy Loo Natasha Chaudhary Andrew Goodall Sally Martin Alun Jones Dharini van der Hoeven Robert G. Parton Michelle M. Hill John F. Hancock 《The Journal of biological chemistry》2009,284(41):28410-28419
The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3.Ras proteins are small GTPases that function as molecular switches on the inner leaflet of the plasma membrane, conveying extracellular signals to the cell interior. Ras proteins are critical regulators of signal transduction pathways controlling key cell fates such as cell growth, differentiation, and apoptosis. Deregulation of these pathways results in aberrant cell growth and tumor formation. Mutations that render Ras constitutively active are found in ∼15% of human cancers, making Ras one of the most clinically significant proteins in human carcinogenesis. Oncogenic mutations are most prevalent in the K-Ras gene, accounting for a large proportion of solid tumors including 90% of pancreatic cancer, 50% of colon cancer, and 30% of non-small cell lung cancer (1, 2).The three major Ras isoforms, H-, N-, and K-Ras generate distinct signal outputs in intact cells, signifying specific roles for each isoform. These functional differences stem from significant sequence divergence in the Ras C-terminal 25 amino acids of the hypervariable region (HVR)3 that directs post-translation attachment of different lipid anchors. The minimal membrane anchor of H-Ras comprises two palmitate groups and a farnesyl group, whereas K-Ras is tethered by a farnesyl group and a polybasic domain (3, 4). These minimal anchors, together with flanking protein sequences and the G-domain, interact with lipids and proteins of the plasma membrane, driving the Ras isoforms into spatially and structurally distinct nanodomains on the plasma membrane (5, 6). Ras lateral segregation is further modulated by the activation state of Ras; active GTP-loaded H-Ras is organized in cholesterol-independent nanoclusters, whereas inactive GDP-loaded H-Ras is arrayed in cholesterol-dependent nanoclusters (5, 7–9). Recent work has also shown that GTP-K-Ras clusters into nanodomains that are spatially distinct from GDP-K-Ras, although both types of nanocluster are cholesterol-independent and actin-dependent (7, 9). K-Ras-GTP nanoclustering, however, is regulated by galectin-3, which operates as a nanodomain scaffold (10, 11).Ras-GTP nanoclusters are the sites of Raf/MEK and ERK recruitment to the plasma membrane. Scaffolding all components of the MAPK module within nanoclusters rewires the biochemistry to generate a digital ERKpp output. The operation of Ras-GTP nanoclusters as highly sensitive digital switches is critical to deliver high fidelity signal transmission across the plasma membrane (12–14). A key parameter in epidermal growth factor (EGF) receptor to MAPK signal transmission is the fraction of Ras-GTP that forms nanoclusters; this clustered fraction sets the gain for cellular MAPK signaling (15, 16).NPM (also known as B23) and nucleolin are multifunctional phosphoproteins predominately localized to the nucleolus that play key roles in ribosome biogenesis (17–19). For example, NPM exhibits ribonuclease activity and preferentially cleaves pre-rRNA. NPM and nucleolin also have functions outside of the nucleolus. Both proteins shuttle between the nucleolus and the cytoplasm (20), and this shuttling may allow NPM to operate as molecular chaperone (21). In addition cytosolic NPM is involved in centrosome duplication (22). Like Ras proteins, NPM and nucleolin regulate cell proliferation and transformation and are overexpressed in multiple cancers (23). However, the physiological role of NPM in carcinogenesis remains controversial because it has been described as both an oncogene and a tumor suppressor (23).In this study we identify NPM and nucleolin as proteins that interact specifically with K-Ras but not H-Ras. Furthermore we definitively identify a subset of NPM and nucleolin on the inner leaflet of the plasma membrane where both proteins interact with K-Ras. Importantly, NPM and nucleolin stabilize K-Ras levels on the plasma membrane, leading to an increase in the K-Ras clustered fraction, which amplifies signal output from the MAPK pathway. Combined, our data indicate that NPM and nucleolin play a critical role in signal transduction via the MAPK pathway. 相似文献
17.
Inorganic Cation Transport and Energy Transduction in Enterococcus hirae and Other Streptococci
下载免费PDF全文

Yoshimi Kakinuma 《Microbiological reviews》1998,62(4):1021-1045
Energy metabolism by bacteria is well understood from the chemiosmotic viewpoint. We know that bacteria extrude protons across the plasma membrane, establishing an electrochemical potential that provides the driving force for various kinds of physiological work. Among these are the uptake of sugars, amino acids, and other nutrients with the aid of secondary porters and the regulation of the cytoplasmic pH and of the cytoplasmic concentration of potassium and other ions. Bacteria live in diverse habitats and are often exposed to severe conditions. In some circumstances, a proton circulation cannot satisfy their requirements and must be supplemented with a complement of primary transport systems. This review is concerned with cation transport in the fermentative streptococci, particularly Enterococcus hirae. Streptococci lack respiratory chains, relying on glycolysis or arginine fermentation for the production of ATP. One of the major findings with E. hirae and other streptococci is that ATP plays a much more important role in transmembrane transport than it does in nonfermentative organisms, probably due to the inability of this organism to generate a large proton potential. The movements of cations in streptococci illustrate the interplay between a variety of primary and secondary modes of transport. 相似文献
18.
19.
Energy Transduction by Anaerobic Ferric Iron Respiration in Thiobacillus ferrooxidans 总被引:3,自引:2,他引:3
下载免费PDF全文

Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerobic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans. 相似文献
20.
Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. 总被引:5,自引:20,他引:5
下载免费PDF全文

The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB on the multicopy vector pACYC177 largely restored the sensitivity of exb mutants to colicins B, D, and M but only marginally increased sensitivity to albomycin. Suppression of the btuB451 mutation in the structural gene for the vitamin B12 outer membrane receptor protein by a mutation in tonB occurred only in an exb+ strain. Degradation of the unstable overproduced TonB protein was prevented by overproduced ExbB protein. The ExbB protein also stabilized the ExbD protein. Pulse-chase experiments with radiolabeled ferrichrome revealed release of ferrichrome from exbB, tonB, and fhuC mutants, showing that ferrichrome had not crossed the cytoplasmic membrane. It is concluded that the ExbB and ExbD proteins contribute to the activity of TonB and, like TonB, are involved in receptor-dependent transport processes across the outer membrane. 相似文献