首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work on the thermodynamics of protein denatured states is providing insight into the stability of residual structure and the conformational constraints that affect the disordered states of proteins. Current data from native state hydrogen exchange and the pH dependence of protein stability indicate that residual structure can modulate the stability of the denatured state by up to 4 kcal mol(-1). NMR structural data have emphasized the role of hydrophobic clusters in stabilizing denatured state residual structures, however recent results indicate that electrostatic interactions, both favorable and unfavorable, are also important modulators of the stability of the denatured state. Thermodynamics methods that take advantage of histidine-heme ligation chemistry have also been developed to probe the conformational constraints that act on denatured states. These methods have provided insights into the role of excluded volume, chain stiffness, and loop persistence in modulating the conformational preferences of highly disordered proteins. New insights into protein folding and novel methods to manipulate protein stability are emerging from this work.  相似文献   

2.
Local structures in denatured proteins may be important in guiding a polypeptide chain during the folding and misfolding processes. Existence of local structures in chemically denatured proteins is a highly controversial issue. NMR parameters [coupling constants (3) J(H(alpha),H(N)) and chemical shifts] of chemically denatured proteins in general deviate little from their values in small peptides. These peptides were presumed to be completely unstructured; therefore, it was considered that chemically denatured proteins are random coils. But recent experimental studies show that small peptides adopt relatively stable structures in aqueous solutions. Small deviations of the NMR parameters from their values in small peptides may thus actually indicate the existence of local structures in chemically denatured proteins. Using NMR data and theoretical predictions we show here that fluctuating beta-strands exist in urea-denatured ubiquitin (8 M urea at pH 2). Residues in such beta-strands populate more frequently the left side of the broad beta region of -psi space. Urea-denatured ubiquitin contains no detectable beta-sheet secondary structures; nevertheless, the fluctuating beta-strands in urea-denatured ubiquitin coincide to the beta-strands in the native state. Formation of beta-strands is in accord with the electrostatic screening model of unfolded proteins. The free energy of a residue in an unfolded protein is in this model determined by the local backbone electrostatics and its screening by backbone solvation. These energy terms introduce strong electrostatic coupling between neighboring residues, which causes cooperative formation of beta-strands in denatured proteins. We propose that fluctuating beta-strands in denatured proteins may serve as initiation sites to form fibrils.  相似文献   

3.
Heme-linked proteins, such as cytochromes, are popular subjects for protein folding studies. There is the underlying question of whether the heme affects the structure of the denatured state by cross-linking it and forming other interactions, which would perturb the folding pathway. We have studied wild-type and mutant cytochrome b562 from Escherichia coli, a 106 residue four-alpha-helical bundle. The holo protein apparently refolds with a half-life of 4 micros in its ferrous state. We have analysed the folding of the apo protein using continuous-flow fluorescence as well as stopped-flow fluorescence and CD. The apo protein folded much more slowly with a half-life of 270 micros that was unaffected by the presence of exogenous heme. We examined the nature of the denatured states of both holo and apo proteins by NMR methods over a range of concentrations of guanidine hydrochloride. The starting point for folding of the holo protein in concentrations of denaturant around the denaturation transition was a highly ordered native-like species with heme bound. Fully denatured holo protein at higher concentrations of denaturant consisted of denatured apo protein and free heme. Our results suggest that the very fast folding species of denatured holo protein is in a compact state, whereas the normal folding pathway from fully denatured holo protein consists of the slower folding of the apo protein followed by the binding of heme. These data should be considered in the analysis of folding of heme proteins.  相似文献   

4.
Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes.  相似文献   

5.
The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins GA88 and GB88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both GA88 and GB88. We show that, contrary to expectation, GB88, characterized by a native α+β fold, displays in the denatured state a content of native-like helical structure greater than GA88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.  相似文献   

6.
Due to Plaxco, Simons, Baker and others, it is now well known that the two-state single domain protein folding rate is fairly well predicted from knowledge of the topology of the native structure. Plaxco et al found that the folding rates of two-state proteins correlate with the average degree to which native contacts are 'local' within the chain sequence: fast-folders usually have mostly local structures. Here, we dissected the native topology further by focusing on non-local and local contacts using lower and upper bounds of allowable sequence separation in computing the average contact order. We analyzed non-local and local contacts of 82 two-state proteins whose experimental folding rates span over six orders of magnitude. We observed that both the number of non-local contacts and the average sequence separation of non-local contacts (non-local CO) are both negatively correlated with the folding rate, showing that the non-local contacts dominate the barrier-crossing process. Surprisingly, the local contact orders of the proteins also correlate with the folding rates. However, this correlation shows a strong positive trend indicating the role of a diffusive search in the denatured basin.  相似文献   

7.
Conformations of globular proteins in the denatured state were studied using a high-resolution lattice model of proteins and Monte Carlo dynamics. The model assumes a united-atom and high-coordination lattice representation of the polypeptide conformational space. The force field of the model mimics the short-range protein-like conformational stiffness, hydrophobic interactions of the side chains and the main-chain hydrogen bonds. Two types of approximations for the short-range interactions were compared: simple statistical potentials and knowledge-based protein-specific potentials derived from the sequence-structure compatibility of short fragments of protein chains. Model proteins in the denatured state are relatively compact, although the majority of the sampled conformations are globally different from the native fold. At the same time short protein fragments are mostly native-like. Thus, the denatured state of the model proteins has several features of the molten globule state observed experimentally. Statistical potentials induce native-like conformational propensities in the denatured state, especially for the fragments located in the core of folded proteins. Knowledge-based protein-specific potentials increase only slightly the level of similarity to the native conformations, in spite of their qualitatively higher specificity in the native structures. For a few cases, where fairly accurate experimental data exist, the simulation results are in semiquantitative agreement with the physical picture revealed by the experiments. This shows that the model studied in this work could be used efficiently in computational studies of protein dynamics in the denatured state, and consequently for studies of protein folding pathways, i.e. not only for the modeling of folded structures, as it was shown in previous studies. The results of the present studies also provide a new insight into the explanation of the Levinthal's paradox.  相似文献   

8.
The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability, and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high-resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV-1 protease, which is natively structured in water, induced by different concentrations of urea, guanidinium chloride, and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant-free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV-1 protease under native conditions displays rich patterns of transient native and non-native structures, which could be of relevance to its guidance through a complex folding process.  相似文献   

9.
Gaining a better understanding of the denatured state ensemble of proteins is important for understanding protein stability and the mechanism of protein folding. We studied the folding kinetics of ribonuclease Sa (RNase Sa) and a charge-reversal variant (D17R). The refolding kinetics are similar, but the unfolding rate constant is 10-fold greater for the variant. This suggests that charge-charge interactions in the denatured state and the transition state ensembles are more favorable in the variant than in RNase Sa, and shows that charge-charge interactions can influence the kinetics and mechanism of protein folding.  相似文献   

10.
The folding pathways and the kinetic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated using discontinuous molecular dynamics simulations. The kinetic study of protein folding was conducted by temperature quenching from a denatured or random coil state to a native state. The progress parameters used in the kinetic study include the squared radius of gyration R(2)(g), the fraction of native contacts within the protein as a whole Q, and between specific strands Q(ab). In the time series of folding, the denatured proteins undergo a conformational change toward the native state. The model proteins exhibit a variety of kinetic folding pathways that include a fast-track folding pathway without passing through an intermediate and multiple pathways with trapping into more than one intermediate. The kinetic folding behavior of the beta-strand proteins strongly depends on the native-state geometry of the model proteins and the size of the bias gap g, an artificial measure of a model protein's preference for its native state.  相似文献   

11.
《Biophysical journal》2022,121(23):4560-4568
The use of polyproline II (PPII) helices in protein design is currently hindered by limitations in our understanding of their conformational stability and folding. Recent studies of the snow flea antifreeze protein (sfAFP), a useful model system composed of six PPII helices, suggested that a low denatured state entropy contributes to folding thermodynamics. Here, circular dichroism spectroscopy revealed minor populations of PPII like conformers at low temperature. To get atomic level information on the conformational ensemble and entropy of the reduced, denatured state of sfAFP, we have analyzed its chemical shifts and {1H}-15N relaxation parameters by NMR spectroscopy at four experimental conditions. No significant populations of stable secondary structure were detected. The stiffening of certain N-terminal residues at neutral versus acidic pH and shifted pKa values leads us to suggest that favorable charge-charge interactions could bias the conformational ensemble to favor the formation the C1-C28 disulfide bond during nascent folding, although no evidence for preferred contacts between these positions was detected by paramagnetic relaxation enhancement under denaturing conditions. Despite a high content of flexible glycine residues, the mobility of the sfAFP denatured ensemble is similar for denatured α/β proteins both on fast ps/ns as well as slower μs/ms timescales. These results are in line with a conformational entropy in the denatured ensemble resembling that of typical proteins and suggest that new structures based on PPII helical bundles should be amenable to protein design.  相似文献   

12.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   

13.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

14.
Comparatively little is known about the role of non-native interactions in protein folding and their role in both folding and stability is controversial. We demonstrate that non-native electrostatic interactions involving specific residues in the denatured state can have a significant effect upon protein stability and can persist in the transition state for folding. Mutation of a single surface exposed residue, Lys12 to Met, in the N-terminal domain of the ribosomal protein L9 (NTL9), significantly increased the stability of the protein and led to faster folding. Structural and energetic studies of the wild-type and K12M mutant show that the 1.9 kcal mol(-1) increase in stability is not due to native state effects, but rather is caused by modulation of specific non-native electrostatic interactions in the denatured state. pH dependent stability measurements confirm that the increased stability of the K12M is due to the elimination of favorable non-native interactions in the denatured state. Kinetic studies show that the non-native electrostatic interactions involving K12 persist in the transition state. The analysis demonstrates that canonical Phi-values can arise from the disruption of non-native interactions as well as from the development of native interactions.  相似文献   

15.
An ensemble of random-coil conformations with no persistent structures has long been accepted as the classical model of denatured proteins due to its consistency with the experimentally determined scaling of protein sizes. However, recent NMR spectroscopy studies on proteins at high chemical denaturant concentrations suggest the presence of significant amounts of native-like structures, in contrast to the classical random-coil picture. To reconcile these seemingly controversial observations, we examine thermally denatured states of experimentally characterized proteins by using molecular dynamics simulations. For all studied proteins, we find that denatured states indeed have strong local conformational bias toward native states while a random-coil power law scaling of protein sizes is preserved. In addition, we explain why experimentally determined size of the protein creatine kinase does not follow general scaling. In simulations, we observe that this protein exhibits a stable intermediate state, the size of which is consistent with the reported experimental observation.  相似文献   

16.
Atomic-level analyses of non-native protein ensembles constitute an important aspect of protein folding studies to reach a more complete understanding of how proteins attain their native form exhibiting biological activity. Previously, formation of hydrophobic clusters in the 6 M urea-denatured state of an ultrafast folding mini-protein known as TC5b from both photo-CIDNP NOE transfer studies and FCS measurements was observed. Here, we elucidate the structural properties of this mini-protein denatured in 6 M urea performing (15)N NMR relaxation studies together with a thorough NOE analysis. Even though our results demonstrate that no elements of secondary structure persist in the denatured state, the heterogeneous distribution of R(2) rate constants together with observing pronounced heteronuclear NOEs along the peptide backbone reveals specific regions of urea-denatured TC5b exhibiting a high degree of structural rigidity more frequently observed for native proteins. The data are complemented with studies on two TC5b point mutants to verify the importance of hydrophobic interactions for fast folding. Our results corroborate earlier findings of a hydrophobic cluster present in urea-denatured TC5b comprising both native and non-native contacts underscoring their importance for ultra rapid folding. The data assist in finding ways of interpreting the effects of pre-existing native and/or non-native interactions on the ultrafast folding of proteins; a fact, which might have to be considered when defining the starting conditions for molecular dynamics simulation studies of protein folding.  相似文献   

17.
The kinetics and thermodynamics of protein folding is investigated using low friction Langevin simulation of minimal continuum mode of proteins. We show that the model protein has two characteristic temperatures: (a) Tθ, at which the chain undergoes a collapse transition from an extended conformation; (b) Tf(< Tθ), at which a finite size first-order transition to the folded state takes place. The kinetics of approach to the native state from initially denatured conformations is probed by several novel correlation functions. We find that the overall kinetics of approach to the native conformation occurs via a three-stage multiple pathway mechanism. The initial stage, characterized by a series of local dihedral angle transitions, eventually results in the compaction of the protein. Subsequently, the molecule acquires native-like structures during the second stage of folding. The final stage of folding involves activated transitions from one of the native-like structures to the native conformation. The first two stages are characterized by a multiplicity of pathways while relatively few paths are involved in the final stage. A detailed analysis of the dynamics of individual trajectories reveals a novel picture of protein folding. We find that afraction of the initial population reaches the native conformation without the formation of any detectable intermediates. This pathway is associated with a nucleation mechanism, i.e., once a critical number of tertiary contacts are established then the native state is reached rapidly. The remaining fraction of molecules become trapped in misfolded structures (stabilized by incorrect tertiary contacts). The slow folding involves transitions over barriers from these structures to the native conformation. The theoretical predictions are compared with recent experiments that probe protein folding kinetics by hydrogen exchange labeling technique. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Most protein domains fold in an apparently co-operative and two-state manner with only the native and denatured states significantly populated at any experimental condition. However, the protein folding energy landscape is often rugged and different transition states may be rate limiting for the folding reaction under different conditions, as seen for the PDZ protein domain family. We have here analyzed the folding kinetics of two PDZ domains and found that a previously undetected third transition state is rate limiting under conditions that stabilize the native state relative to the denatured state. In light of these results, we have re-analyzed previous folding data on PDZ domains and present a unified folding mechanism with three distinct transition states separated by two high-energy intermediates. Our data show that sequence composition tunes the relative stabilities of folding transition states within the PDZ family, while the overall mechanism is determined by topology. This model captures the kinetic folding mechanism of all PDZ domains studied to date.  相似文献   

19.
YibK is a 160 residue homodimeric protein belonging to the SPOUT class of methyltransferases. Proteins in this group all display a unique topological feature; the backbone polypeptide chain folds to form a deep trefoil knot. Such knotted structures were completely unpredicted, it being thought impossible for a protein to fold efficiently in this way. However, they are becoming more common and there are now a growing number of examples in the Protein Data Bank. These intriguing knotted structures represent a new and significant challenge in the field of protein folding. Here, we present an initial characterisation of the folding of YibK, one of the smallest knotted proteins to be identified. This is the first detailed folding study on a knotted protein to be reported. We have established conditions under which the protein can be denatured reversibly in vitro using urea, thereby showing that molecular chaperones are not required for the efficient folding of this protein. A series of equilibrium unfolding experiments were performed over a 400-fold range of protein concentration. Both secondary and tertiary structural probes show a single, protein concentration-dependent unfolding transition, and data are most consistent with a three-state equilibrium denaturation model involving a monomeric intermediate. Thermodynamic parameters obtained from the fit of the data to this model indicate that the intermediate is a stable species with appreciable secondary and tertiary structure; whether the topological knot remains in the intermediate state is still to be shown. Together, these results demonstrate that, despite its complex knotted structure, YibK is able to fold efficiently and behaves remarkably similarly to other dimeric proteins under equilibrium conditions.  相似文献   

20.
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号