首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Pleistocene environmental fluctuations on the distribution and diversity of organisms in Southeast Asia are much less well known than in Europe and North America. In these regions, the combination of palaeoenvironmental reconstruction and inferences about population history from genetic data has been very powerful. In Southeast Asia, mosquitoes are good candidates for the genetic approach, with the added benefit that understanding the relative contributions of historical and current processes to population structure can inform management of vector species. Genetic variation among populations of Anopheles minimus was examined using 144 mtDNA COII sequences from 23 sites in China, Thailand and Vietnam. Haplotype diversity was high, with two distinct lineages that have a sequence divergence of over 2% and exhibit different geographical distributions. We compare alternative hypotheses concerning the origin of this pattern. The observed data deviate from the expectations based on a single-panmictic population with or without growth, or a stable but spatially structured population. However, they can be readily accommodated by a model of past fragmentation into eastern and western refugia, followed by growth and range expansion. This is consistent with the palaeoenvironmental reconstructions currently available for the region.  相似文献   

2.
Among various potential consequences of rarity is genetic erosion. Neutral genetic theory predicts that rare species will have lower genetic diversity than common species. To examine the association between genetic diversity and rarity, variation at eight DNA microsatellite markers was documented for 14 Acropora species that display different patterns of distribution and abundance in the Indo-Pacific Ocean. Our results show that the relationship between rarity and genetic diversity is not a positive linear association because, contrary to expectations, some rare species are genetically diverse and some populations of common species are genetically depleted. Our data suggest that inbreeding is the most likely mechanism of genetic depletion in both rare and common corals, and that hybridization is the most likely explanation for higher than expected levels of genetic diversity in rare species. A significant hypothesis generated from our study with direct conservation implications is that as a group, Acropora corals have lower genetic diversity at neutral microsatellite loci than may be expected from their taxonomic diversity, and this may suggest a heightened susceptibility to environmental change. This hypothesis requires validation based on genetic diversity estimates derived from a large portion of the genome.  相似文献   

3.
Understanding how climatic change impacts biological diversity is critical to conservation. Yet despite demonstrated effects of climatic perturbation on geographic ranges and population persistence, surprisingly little is known of the genetic response of species. Even less is known over ecologically long time scales pertinent to understanding the interplay between microevolution and environmental change. Here, we present a study of population variation by directly tracking genetic change and population size in two geographically widespread mammal species (Microtus montanus and Thomomys talpoides) during late-Holocene climatic change. We use ancient DNA to compare two independent estimates of population size (ecological and genetic) and corroborate our results with gene diversity and serial coalescent simulations. Our data and analyses indicate that, with population size decreasing at times of climatic change, some species will exhibit declining gene diversity as expected from simple population genetic models, whereas others will not. While our results could be consistent with selection, independent lines of evidence implicate differences in gene flow, which depends on the life history strategy of species.  相似文献   

4.
珍稀濒危植物海南粗榧种群遗传多样性研究   总被引:11,自引:0,他引:11  
利用RAPD技术对珍稀濒危植物海南粗榧(Cephalotaxus manniiHook.f.)遗传多样性水平,分布、濒危原因及物种保护等问题进行了探讨。结果表明:1、海南粗榧在海南岛的5个取样地点表现出低水平的遗传多样性,对环境变化物适应能力不强;2、海南粗榧种群内和种群间的遗传多样性所占比例有很大差异,绝大部分变异分布于种群内(DAN多样性为85.1%);种群间仅有较低程度的分化;3、人为砍伐,植被破坏,台风、被食用遗传漂变是海南粗榧遗传多样性低水平的主要原因,也是物种濒危的主要原因;4、对于呈零星分布的濒危植物海南粗榧的研究与保护,应充分考虑个体小环境之间的差异。考虑影响小种群的随机因素;5、应采取有力措施,就地保护现有种群,并寻求适当的方法迅速扩展种群,降低基因丧失率;选择遗传多样性较高且破坏相对较小的黎母岭种群作为保护重点;同时应加强对其他种群的保护与管理;6、海南粗榧种群内,种群音质遗传多样性在不同引物之间有较大差别。多态性位点百分率则是种群间的变化大于引物间的变化。  相似文献   

5.
Using RAPD technique, the DNA diversity of Cephalotaxus mannii Hook. f., its genetic diversity pattern,the reasons for its endangered position and conservative approaches were studied. The results show that: 1. The genetic diversity of C. mannii collected from five localities in Hainan is low, and its adaptability to environmental change is weak. 2. The differences of genetic diversity between intra and inter populations are great, and the major variation distributes within the population (DNA diversity is 85.1%). 3. The excessive lumbering, man made destruction, violent typhoon, edible value of the seeds and genetic drift were the main reasons for the low level genetic diversity of C. mannii and its endangered position. 4. The difference of the micro environment and other random factors affecting the population should also be taken into full consideration in the study and in protection of such occasionally scattered plants. 5. Enforced measures should be taken to protect the present population, enlarge the population and lower the loss rate of its gene. Mt. Limulin should be chosen as a conservative spot because of its high genetic diversity and less destruction of the forest. Meanwhile, the protection of other populations should be enforced. 6. The differences within and between the populations are great based on different primers used. The change of proportions in polymorphic loci between the populations is more than that between the primers.  相似文献   

6.
Evolution occurs through genome variation followed by selection. Because DNA sequence context affects the activity of enzymes that copy, move and repair DNA, there are intrinsic variations in the probability of genetic variation along a genome. These intrinsic variations can be affected by selective pressure. Codon changes that do not alter the encoded amino acids may still have effects on the local rate of sequence change. Large gene families could encode a successful genetic framework by which to evolve new, functional members. The speed of adaptation to environmental challenges may be improved when the distinct mechanisms of genetic change come under regulatory control. Natural selection operates on mechanisms that generate and modulate diversity as it does on all biological functions.  相似文献   

7.
Abstract 1. Previous studies have quantified the recent decline of numerous Lepidopteran species in the U.K., including the garden tiger moth (Arctia caja), in which abundance has decreased by 85% over the past 30 years. At the same time that overall numbers have been falling, the distribution of abundance of this species has been moving northwards. In this study, morphological and genetic data were used to investigate the possibility that these changes in abundance and distribution have been accompanied by microevolutionary changes. 2. A comparison of wing size and shape in current and historical moth samples revealed that wing shape has altered significantly over the past century, resulting in longer, narrower hindwings and narrower forewings for a given forewing length. Habitat fragmentation and increased suitability of northerly sites provide a plausible explanation for the selection of increasingly dispersive individuals. 3. Mitochondrial DNA revealed no phylogeographic structuring either before or after the population decline. However, a comparison of mtDNA haplotypes from current and museum specimens indicated that the recent population decline across the U.K. has been accompanied by a significant loss of genetic diversity. 4. The changes in wing shape suggest recent adaptation to environmental change, whereas a loss of genetic diversity may limit the ability of garden tiger moths to adapt to future environmental change.  相似文献   

8.
Genetic Diversity and the Survival of Populations   总被引:7,自引:0,他引:7  
Abstract: In this comprehensive review, a range of factors is considered that may influence the significance of genetic diversity for the survival of a population. Genetic variation is essential for the adaptability of a population in which quantitatively inherited, fitness-related traits are crucial. Therefore, the relationship between genetic diversity and fitness should be studied in order to make predictions on the importance of genetic diversity for a specific population. The level of genetic diversity found in a population highly depends on the mating system, the evolutionary history of a species and the population history (the latter is usually unknown), and on the level of environmental heterogeneity. An accurate estimation of fitness remains complex, despite the availability of a range of direct and indirect fitness parameters. There is no general relationship between genetic diversity and various fitness components. However, if a lower level of heterozygosity represents an increased level of inbreeding, a reduction in fitness can be expected. Molecular markers can be used to study adaptability or fitness, provided that they represent a quantitative trait locus (QTL) or are themselves functional genes involved in these processes. Next to a genetic response of a population to environmental change, phenotypic plasticity in a genotype can affect fitness. The relative importance of plasticity to genetic diversity depends on the species and population under study and on the environmental conditions. The possibilities for application of current knowledge on genetic diversity and population survival for the management of natural populations are discussed.  相似文献   

9.
李苗  陈小勇 《生态学报》2023,43(17):6951-6967
全球渔业衰退是21世纪人类面临的重要挑战之一。为了有效地遏制鱼类资源的衰退,精确的鱼类生态调查是其首要任务。传统的鱼类监测以渔获物采集与形态学鉴定为主,往往耗时耗力且效果不佳,已无法满足现阶段大尺度上的精确调查。环境DNA (eDNA)技术作为一种近年来新兴的鱼类生态调查方法,其与传统方法相比具有灵敏度高、经济高效、采样受限小且对生态系统无干扰的优势,目前其已被广泛地应用于鱼类物种监测、多样性调查、生物量评估以及繁殖活动监测等方面的研究。然而,eDNA技术在鱼类生态学研究的具体应用中暴露出的一些问题将会影响其监测结果的精确性,诸如操作流程的不规范、基因数据库的不完善以及eDNA在环境中生态学过程的不明确等。鉴于上述原因,首先对eDNA技术的发展历程、分析流程以及eDNA技术在鱼类生态学研究领域中的研究进展进行了综述,而后着重分析了eDNA技术的发展当前所面临的困难与挑战,并提出了相应的解决方案,最后对eDNA技术未来在鱼类生态学研究领域中的发展趋势做出了展望。通过本研究,以期能够为eDNA技术在鱼类生态学领域中的准确应用提供理论基础。  相似文献   

10.
In-depth knowledge about spatial and temporal variation in microbial diversity and function is needed for a better understanding of ecological and evolutionary responses to global change. In particular, the study of microbial ancient DNA preserved in sediment archives from lakes and oceans can help us to evaluate the responses of aquatic microbes in the past and make predictions about future biodiversity change in those ecosystems. Recent advances in molecular genetic methods applied to the analysis of historically deposited DNA in sediments have not only allowed the taxonomic identification of past aquatic microbial communities but also enabled tracing their evolution and adaptation to episodic disturbances and gradual environmental change. Nevertheless, some challenges remain for scientists to take full advantage of the rapidly developing field of paleo-genetics, including the limited ability to detect rare taxa and reconstruct complete genomes for evolutionary studies. Here, we provide a brief review of some of the recent advances in the field of environmental paleomicrobiology and discuss remaining challenges related to the application of molecular genetic methods to study microbial diversity, ecology, and evolution in sediment archives. We anticipate that, in the near future, environmental paleomicrobiology will shed new light on the processes of microbial genome evolution and microbial ecosystem responses to quaternary environmental changes at an unprecedented level of detail. This information can, for example, aid geological reconstructions of biogeochemical cycles and predict ecosystem responses to environmental perturbations, including in the context of human-induced global changes.  相似文献   

11.
ISSR分子标记在入侵植物研究中的应用   总被引:6,自引:0,他引:6  
外来生物入侵是对全球生物多样性最为严重的威胁之一,对经济安全、生态安全、社会安全、国际利益和国际贸易都具有重要影响.入侵种群的分子标记分析是外来入侵生物研究的重要途径.其中,简单序列重复区间标记(inter-simple sequence repeat,ISSR)是一种基于微卫星序列发展起来的新型分子标记,具有简便、快捷、结果稳定和DNA多态性高等优点.本文系统地介绍了ISSR分子标记的原理、技术特征及其实验操作,并简要地阐述了ISSR分子标记在外来入侵植物的群体遗传结构分析、遗传多样性检测、入侵来源推测、入侵植物的分布模式及其亲缘关系分析、入侵植物的繁育特性检测等方面的应用及其研究进展.  相似文献   

12.
Laura S. Epp 《Molecular ecology》2019,28(10):2456-2458
The past centuries have seen tremendous turnovers in species distributions and biodiversity due to anthropogenic impacts on a global scale. The processes are ongoing and mostly not well documented. Long‐term records of biotic change can be recovered from sedimentary deposits, but traditional analyses were restricted to organisms that leave behind visible traces and molecular genetic tools were mostly employed on samples that promised good DNA preservation. In this issue of Molecular Ecology, Shaw, Weyrich, Hallegraeff and Cooper (2019) and Gomez Cabrera et al. (2019) present two studies on marine sedimentary records from warm environments, in which they successfully analyze ancient environmental DNA (aeDNA) on a decadal and centennial scale. Notably, the studies were conducted on novel samples with nonoptimal preservation conditions for ancient DNA ‐ historical collections of ship ballast tank sediments from Australia and two coral reef cores spanning up to 750 years (Figure 1) ‐ but yielded a high diversity of taxa. This highlights that aeDNA is a promising tool to globally study biodiversity history on scales of decades to centuries ‐ the timeframe most relevant to human society in the context of both current climate change and direct anthropogenic modifications of the environment.  相似文献   

13.
Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.  相似文献   

14.
Trait diversity - the substrate for natural selection - is necessary for adaptation through selection, particularly in populations faced with environmental changes that diminish population fitness. In habitats that remain unchanged for many generations, stabilizing selection maximizes exploitation of resources by reducing trait diversity to a narrow optimal range. One might expect that such ostensibly homogeneous populations would have a reduced potential for heritable adaptive responses when faced with fitness-reducing environmental changes. However, field studies have documented populations that, even after long periods of evolutionary stasis, can still rapidly evolve in response to changed environmental conditions. We argue that degeneracy, the ability of diverse population elements to function similarly, can satisfy both the current need to maximize fitness and the future need for diversity. Degenerate ensembles appear functionally redundant in certain environmental contexts and functionally diverse in others. We propose that genetic variation not contributing to the observed range of phenotypes in a current population, also known as cryptic genetic variation (CGV), is a specific case of degeneracy. We argue that CGV, which gradually accumulates in static populations in stable environments, reveals hidden trait differences when environments change. By allowing CGV accumulation, static populations prepare themselves for future rapid adaptations to environmental novelty. A greater appreciation of degeneracy's role in resolving the inherent tension between current stabilizing selection and future directional selection has implications in conservation biology and may be applied in social and technological systems to maximize current performance while strengthening the potential for future changes.  相似文献   

15.
Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.  相似文献   

16.
Current ecosystem model predictions concerning the effects of global temperature increase on forest responses do not account for factors influencing long‐term evolutionary dynamics of natural populations. Population structure and genetic variability may represent important factors in a species' ability to adapt to global‐scale environmental change without experiencing major alterations in current range limits. Genetic variation and structure in sugar maple (Acer saccharum Marsh.) were examined across three regions, between two stands within regions, and among four to five open‐pollinated families within stands (total N = 547 genotypes) using 58 randomly amplified polymorphic DNA (RAPD) markers. Differences within open‐pollinated families account for the largest portion of the total variation (29%), while differences among regions represent less than 2% of the total variation. Genetic diversity, as indicated by estimates of percent polymorphic loci, expected heterozygosity, fixation coefficients, and genetic distance, is greatest in the southern region, which consists of populations with the maximum potential risk due to climate change effects. The high level of genetic similarity (greater than 90%) among some genotypes suggests that gene flow is occurring among regions, stands, and families. High levels of genetic variation among families indicate that vegetational models designed to predict species' response to global‐scale environmental change may need to consider the degree and hierarchical structure of genetic variation when making large‐scale inferences.  相似文献   

17.
We investigated the impact of past changes in habitat suitability on the current patterns of genetic diversity of two southern beeches (Nothofagus nervosa and Nothofagus obliqua) in their eastern fragmented range in Patagonian Argentina, and model likely future threats to their population genetic structure. Our goal was to develop a spatially-explicit strategy for guiding conservation and management interventions in light of climate change. We combined suitability modelling under current, past (Last Glacial Maximum ~ 21,000 bp), and future (2050s) climatic conditions with genetic characterization data based on chloroplast DNA, isozymes, and microsatellites. We show the complementary usefulness of the distribution of chloroplast haplotypes and locally common allelic richness calculated from microsatellite data for identifying the locations of putative glacial refugia. Our findings suggest that contemporary hotspots of genetic diversity correspond to convergence zones of different expansion routes, most likely as a consequence of admixture processes. Future suitability predictions suggest that climate change might differentially affect both species. All genetically most diverse populations of N. nervosa and several of N. obliqua are located in areas that may be most severely impacted by climate change, calling for forward-looking conservation interventions. We propose a practical spatially- explicit strategy to target conservation interventions distinguishing priority populations for (1) in situ conservation (hotspots of genetic diversity likely to remain suitable under climate change), (2) ex situ conservation in areas where high genetic diversity overlaps with high likelihood of drastic climate change, (3) vulnerable populations (areas expected to be negatively affected by climate change), and (4) potential expansion areas under climate change.  相似文献   

18.
Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and isolated to some degree (e.g. sea loughs and offshore islands). While such features enable easier management, they may have important implications for the genetic structure of protected populations, the ability of populations to recover from local catastrophes and the potential for marine reserves to act as sources of propagules for surrounding areas. Here, we present a case study demonstrating genetic differentiation, isolation, inbreeding and reduced genetic diversity in populations of the dogwhelk Nucella lapillus in Lough Hyne Marine Nature Reserve (an isolated sea lough in southern Ireland), compared with populations on the local adjacent open coast and populations in England, Wales and France. Our study demonstrates that this sea lough is isolated from open coast populations, and highlights that there may be long-term genetic consequences of selecting reserves on the basis of isolation and ease of protection.  相似文献   

19.
黄山花楸种群遗传多样性研究   总被引:12,自引:0,他引:12  
刘登义  沈浩  杨月红  张杰 《应用生态学报》2003,14(12):2141-2144
利用RAPD技术,对黄山花楸(Sorbus amabilis)自然分布区的13个自然种群的遗传多样性进行了研究,从40个10碱基随机引物中筛选出能产生稳定多态性标记的引物14个,共扩增出105个位点,其中多态性位点30个,占28.6%,应用UPGMA法和Neighbor-Joining法对遗传距离进行聚类分析构建树系图。结果表明,黄山花楸自然种群具有较低的遗传多样性,对环境变化的适应能力较差;其种群间的遗传差异与其地理分布有关;黄山花楸自身的特殊进化历史和人为砍伐以及自然灾害(火灾、病虫害等)和小种群的遗传漂变作用是黄山花楸遗传多样性水平低的主要原因,也是其濒危的主要原因。  相似文献   

20.
The adaptive potential of restored communities is important to their long‐term sustainability, particularly in the face of changing environmental conditions such as climate change. The genetic diversity of rainforest plants in restoration projects and their suitability to current and future environmental site conditions are important considerations for restoration practitioners and seed suppliers. Presented here are the results from a survey of rainforest restoration practitioners in North East New South Wales and South East Queensland, Australia. The survey canvassed practitioners’ perspectives on local provenancing, genetic diversity and other aspects of restoration that have the potential to influence the long‐term success of restored rainforest communities. All respondents to this survey typically included a planting component in their restoration projects (whether for reconstruction or to supplement assisted regeneration). Planting represents an anthropogenic selection and translocation of genotypes to a restoration site. As a result, considerations of genetic origin and the potential implications to the restored rainforest community are relevant to most restoration projects. This industry survey's results showed that genetic diversity and local provenancing are concepts of importance to practitioners. However, there seems to be a lack of clarity within the industry about how to define local provenance and how the concepts of local provenancing and genetic diversity influence each other. The results indicated that local provenancing remains the preferred provenancing strategy amongst practitioners, with inclusion of non‐local provenance seed not regarded as an effective means of improving genetic diversity. This is despite researchers highlighting the limitations of local provenancing, particularly in highly fragmented landscapes, and despite the publication of numerous alternative provenancing strategies. Rainforest restoration may benefit from practitioners questioning the appropriateness of local provenancing to their restoration projects and considering that in some circumstances exclusive reliance on local provenance stock may in fact be worse, not better, for the long‐term sustainability of restored communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号