首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Genomic studies of cell differentiation and function within a whole organism depend on the ability to isolate specific cell types from a tissue, but this is technically difficult. We developed a method called INTACT (isolation of nuclei tagged in specific cell types) that allows affinity-based isolation of nuclei from individual cell types of a tissue, thereby circumventing the problems associated with mechanical purification techniques. In this method nuclei are affinity-labeled through transgenic expression of a biotinylated nuclear envelope protein in the cell type of interest. Total nuclei are isolated from transgenic plants and biotin-labeled nuclei are then purified using streptavidin-coated magnetic beads, without the need for specialized equipment. INTACT gives high yield and purity of nuclei from the desired cell types, which can be used for genome-wide analysis of gene expression and chromatin features. The entire procedure, from nuclei purification through cDNA preparation or chromatin immunoprecipitation (ChIP), can be completed within 2 d. The protocol we present assumes that transgenic lines are already available, and includes procedural details for amplification of cDNA or ChIP DNA prior to microarray or deep sequencing analysis.  相似文献   

9.
Gastrulation movements are critical for establishing the three germ layers and the architecture of vertebrate embryos. During Xenopus laevis gastrulation, mesodermal tissue migrates on the blastocoel roof and elongates along the antero-posterior axis. During this process, cells in the dorsal mesoderm are polarized and intercalate with each other, which is defined as convergent extension and is known to be regulated by the non-canonical Wnt pathway. Here, we show that paxillin plays an essential role in this process. Paxillin is a focal-adhesion associated protein implicated in the regulation of actin cytoskeletal organization and cell motility, but its role in Xenopus embryogenesis has not yet been clarified. We demonstrate that the Wnt pathway controls the ubiquitination and stability of paxillin, and that this regulatory mechanism is essential for convergent extension movements. We identified a RING finger protein XRNF185, which physically binds to paxillin and the proteasome. XRNF185 destabilizes paxillin at focal adhesions and promotes mesodermal cell migration during convergent extension. We propose a mechanism to regulate gastrulation movements that involves paxillin ubiquitination and stability controlled by Wnt signalling.  相似文献   

10.
Inclusion of cardiac troponin T (cTNT) exon 5 in embryonic muscle requires conserved flanking intronic elements (MSEs). ETR-3, a member of the CELF family, binds U/G motifs in two MSEs and directly activates exon inclusion in vitro. Binding and activation by ETR-3 are directly antagonized by polypyrimidine tract binding protein (PTB). We use dominant-negative mutants to demonstrate that endogenous CELF and PTB activities are required for MSE-dependent activation and repression in muscle and nonmuscle cells, respectively. Combined use of CELF and PTB dominant-negative mutants provides an in vivo demonstration that antagonistic splicing activities exist within the same cells. We conclude that cell-specific regulation results from the dominance of one among actively competing regulatory states rather than modulation of a nonregulated default state.  相似文献   

11.
12.
13.
14.
Protein phosphatase 1 (PP1) is a ubiquitous serine/threonine phosphatase regulating many cellular processes. PP1alpha and -gamma are closely related isoforms with distinct localization patterns, shown here by time-lapse microscopy of stably expressed fluorescent protein fusions. A pool of PP1gamma is selectively loaded onto chromatin at anaphase. Using stable isotope labeling and proteomics, we identified a novel PP1 binding protein, Repo-Man, which selectively recruits PP1gamma onto mitotic chromatin at anaphase and into the following interphase. This approach revealed both novel and known PP1 binding proteins, quantitating their relative distribution between PP1alpha and -gamma in vivo. When overexpressed, Repo-Man can also recruit PP1alpha to chromatin. Mutating Repo-Man's PP1 binding domain does not disrupt chromatin binding but abolishes recruitment of PP1 onto chromatin. RNA interference-induced knockdown of Repo-Man caused large-scale cell death by apoptosis, as did overexpression of this dominant-negative mutant. The data indicate that Repo-Man forms an essential complex with PP1gamma and is required for the recruitment of PP1 to chromatin.  相似文献   

15.
Directed evolution experiments rely on the cyclical application of mutagenesis, screening and amplification in a test tube. They have led to the creation of novel proteins for a wide range of applications. However, directed evolution currently requires an uncertain, typically large, number of labor intensive and expensive experimental cycles before proteins with improved function are identified. This paper introduces predictive models for quantifying the outcome of the experiments aiding in the setup of directed evolution for maximizing the chances of obtaining DNA sequences encoding enzymes with improved activities. Two methods of DNA manipulation are analysed: error-prone PCR and DNA recombination. Error-prone PCR is a DNA replication process that intentionally introduces copying errors by imposing mutagenic reaction conditions. The proposed model calculates the probability of producing a specific nucleotide sequence after a number of PCR cycles. DNA recombination methods rely on the mixing and concatenation of genetic material from a number of parent sequences. This paper focuses on modeling a specific DNA recombination protocol, DNA shuffling. Three aspects of the DNA shuffling procedure are modeled: the fragment size distribution after random fragmentation by DNase I, the assembly of DNA fragments, and the probability of assembling specific sequences or combinations of mutations. Results obtained with the proposed models compare favorably with experimental data.  相似文献   

16.
17.
Hedgehog (Hh) plays crucial roles in tissue-patterning and activates signaling in Patched (Ptc)-expressing cells. Paracrine signaling requires release and transport over many cell diameters away by a process that requires interaction with heparan sulfate proteoglycans (HSPGs). Here, we examine the organization of functional, fluorescently tagged variants in living cells by using optical imaging, FRET microscopy, and mutational studies guided by bioinformatics prediction. We find that cell-surface Hh forms suboptical oligomers, further concentrated in visible clusters colocalized with HSPGs. Mutation of a conserved Lys in a predicted Hh-protomer interaction interface results in an autocrine signaling-competent Hh isoform--incapable of forming dense nanoscale oligomers, interacting with HSPGs, or paracrine signaling. Thus, Hh exhibits a hierarchical organization from the nanoscale to visible clusters with distinct functions.  相似文献   

18.
C N Parker  S E Halford 《Cell》1991,66(4):781-791
A noninvasive method for monitoring communications on DNA was developed from the specificity of resolvase for the arrangement of its recombinational sites. Constraints in DNA structure, caused by interactions between distant sites, can be detected by resolvase as they arise. The method was used to follow the formation and decay of synaptic intermediates during site-specific recombination by resolvase. Synaptic complexes were formed very rapidly, at a rate limited by the initial association of the protein with DNA rather than the physical motion of DNA segments. The recombinational sites seem to encounter each other by an ordered motion, perhaps dictated by DNA supercoiling instead of random collisions, so that the first encounter produces the active complex.  相似文献   

19.
20.
A puzzling aspect of replication of bacteriophage Qbeta RNA has always been that replicase binds at an internal segment, the M-site, some 1450 nt away from the 3' end. Here, we report on the existence of a long-range pseudoknot, base-pairing eight nt in the loop of the 3' terminal hairpin to a single-stranded interdomain sequence located about 1200 nt upstream, close to the internal replicase binding site. Introduction of a single mismatch into this pseudoknot is sufficient to abolish replication, but the inhibition is fully reversed by a second-site substitution that restores the pairing. The pseudoknot is part of an elaborate structure that seems to hold the 3' end in a fixed position vis a vis the replicase binding site. Our results imply that the shape of the RNA confers the functonality. We discuss the possible relevance of our findings for replication of other viral RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号