共查询到20条相似文献,搜索用时 8 毫秒
1.
《Biochemical and biophysical research communications》2020,521(3):687-692
Ebola virus (EBOV) is a zoonotic pathogen, the infection often results in severe, potentially fatal, systematic disease in human and nonhuman primates. VP35, an essential viral RNA-dependent RNA polymerase cofactor, is indispensable for Ebola viral replication and host innate immune escape. In this study, VP35 was demonstrated to be phosphorylated at Serine/Threonine by immunoblotting, and the major phosphorylation sites was S187, S205, T206, S208 and S317 as revealed by LC-MS/MS. By an EBOV minigenomic system, EBOV minigenome replication was shown to be significantly inhibited by the phosphorylation-defective mutant, VP35 S187A, but was potentiated by the phosphorylation mimic mutant VP35 S187D. Together, our findings demonstrate that EBOV VP35 is phosphorylated on multiple residues in host cells, especially on S187, which may contribute to efficient viral genomic replication and viral proliferation. 相似文献
2.
Egawa N Nakahara T Ohno S Narisawa-Saito M Yugawa T Fujita M Yamato K Natori Y Kiyono T 《Journal of virology》2012,86(6):3276-3283
Papillomavirus genomes are thought to be amplified to about 100 copies per cell soon after infection, maintained constant at this level in basal cells, and amplified for viral production upon keratinocyte differentiation. To determine the requirement for E1 in viral DNA replication at different stages, an E1-defective mutant of the human papillomavirus 16 (HPV16) genome featuring a translation termination mutation in the E1 gene was used. The ability of the mutant HPV16 genome to replicate as nuclear episomes was monitored with or without exogenous expression of E1. Unlike the wild-type genome, the E1-defective HPV16 genome became established in human keratinocytes only as episomes in the presence of exogenous E1 expression. Once established, it could replicate with the same efficiency as the wild-type genome, even after the exogenous E1 was removed. However, upon calcium-induced keratinocyte differentiation, once again amplification was dependent on exogenous E1. These results demonstrate that the E1 protein is dispensable for maintenance replication but not for initial and productive replication of HPV16. 相似文献
3.
4.
Autonomously replicating DNA viruses must evade mitotic checkpoints and actively partition their genomes to maintain persistent infection. The E2 protein serves these functions by tethering papillomavirus episomes to mitotic chromosomes; however, the mechanism remains unresolved. We show that E2 binds ChlR1, a DNA helicase that plays a role in sister chromatid cohesion. The E2 mutation W130R fails to bind ChlR1 and correspondingly does not associate with mitotic chromosomes. Viral genomes encoding this E2 mutation are not episomally maintained in cell culture. Notably, E2 W130R binds Brd4, which reportedly acts as a mitotic tether, indicating this interaction is insufficient for E2 association with mitotic chromosomes. RNAi-induced depletion of ChlR1 significantly reduced E2 localization to mitotic chromosomes. These studies provide compelling evidence that ChlR1 association is required for loading the papillomavirus E2 protein onto mitotic chromosomes and represents a kinetochore-independent mechanism for viral genome maintenance and segregation. 相似文献
5.
Nuclear import of bovine papillomavirus type 1 E1 protein is mediated by multiple alpha importins and is negatively regulated by phosphorylation near a nuclear localization signal 下载免费PDF全文
Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins alpha3, alpha4, and alpha5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin alpha3, alpha4, or alpha5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three alpha importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin alpha and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation. 相似文献
6.
7.
Mini-F E protein: the carboxy-terminal end is essential for E gene repression and mini-F copy number control 总被引:5,自引:0,他引:5
F Bex P Piérard A Desmyter P Drèze M Colet M Couturier 《Journal of molecular biology》1986,189(2):293-303
Mini-F is a segment of the conjugative plasmid F consisting of two origins of replication flanked by regulatory regions, which ensure a normal control of replication and partitioning. Adjacent to the ori-2 origin is a complex coding region that consists of the E gene overlapped by three open reading frames with the coding potential for 9000 Mr polypeptides here designated 9 kd-1, 9 kd-2 and 9 kd-3. In this paper, we show that open reading frame 9 kd-3 is preceded by active promoter and Shine-Dalgarno sequences. The E coding region specifies: an initiator of replication, which acts at the ori-2 site; a function that negatively regulates the expression of the E gene; and a function involved in mini-F copy number control. To assign one of these functions to one of the overlapping coding sequence, we have isolated, characterized and sequenced mutations mapping in the E coding region. In this paper, we analyse two mutations (cop5 and pla25) that abolish the repression of the E gene. As these mutations affect the primary structure of protein E itself but not the 9 kd polypeptides, we conclude that protein E takes part in the negative regulation of its own synthesis. In addition, the localization of the cop5 and pla25 mutations indicates that the carboxy-terminal end of the E protein is involved in the autorepression function. The cop5 mutation causes an eightfold increase of the mini-F copy number. The pla25 mutation leads to the inability of the derived mini-F plasmid to give rise to plasmid-harbouring bacteria. The ways in which the cop5 and pla25 mutations may lead to such phenotypes are discussed in relation to the different functions mapping in the E coding sequence. 相似文献
8.
Green MF Scott JW Steel R Oakhill JS Kemp BE Means AR 《The Journal of biological chemistry》2011,286(32):28066-28079
Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a serine/threonine-directed kinase that is activated following increases in intracellular Ca(2+). CaMKKβ activates Ca(2+)/calmodulin-dependent protein kinase I, Ca(2+)/calmodulin-dependent protein kinase IV, and the AMP-dependent protein kinase in a number of physiological pathways, including learning and memory formation, neuronal differentiation, and regulation of energy balance. Here, we report the novel regulation of CaMKKβ activity by multisite phosphorylation. We identify three phosphorylation sites in the N terminus of CaMKKβ, which regulate its Ca(2+)/calmodulin-independent autonomous activity. We then identify the kinases responsible for these phosphorylations as cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3). In addition to regulation of autonomous activity, we find that phosphorylation of CaMKKβ regulates its half-life. We find that cellular levels of CaMKKβ correlate with CDK5 activity and are regulated developmentally in neurons. Finally, we demonstrate that appropriate phosphorylation of CaMKKβ is critical for its role in neurite development. These results reveal a novel regulatory mechanism for CaMKKβ-dependent signaling cascades. 相似文献
9.
Xiao L Chen Y Ji M Volle DJ Lewis RE Tsai MY Dong J 《The Journal of biological chemistry》2011,286(42):36304-36315
Recent genetic studies in Drosophila identified Kibra as a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. The cellular function and regulation of human KIBRA remain largely unclear. Here, we show that KIBRA is a phosphoprotein and that phosphorylation of KIBRA is regulated in a cell cycle-dependent manner with the highest level of phosphorylated KIBRA detected in mitosis. We further demonstrate that the mitotic kinases Aurora-A and -B phosphorylate KIBRA both in vitro and in vivo. We identified the highly conserved Ser(539) as the primary phosphorylation site for Aurora kinases. Moreover, we found that wild-type, but not catalytically inactive, protein phosphatase 1 (PP1) associates with KIBRA. PP1 dephosphorylated Aurora-phosphorylated KIBRA. KIBRA depletion impaired the interaction between Aurora-A and PP1. We also show that KIBRA associates with neurofibromatosis type 2/Merlin in a Ser(539) phosphorylation-dependent manner. Phosphorylation of KIBRA on Ser(539) plays a role in mitotic progression. Our results suggest that KIBRA is a physiological substrate of Aurora kinases and reveal a new avenue between KIBRA/Hippo signaling and the mitotic machinery. 相似文献
10.
11.
12.
Ca(2+)-independent or novel protein kinase Cs (nPKCs) contain an N-terminal C2 domain of unknown function. Removal of the C2 domain of the Aplysia nPKC Apl II allows activation of the enzyme at lower concentrations of phosphatidylserine, suggesting an inhibitory role for the C2 domain in enzyme activation. However, the mechanism for C2 domain-mediated inhibition is not known. Mapping of the autophosphorylation sites for protein kinase C (PKC) Apl II reveals four phosphopeptides in the regulatory domain of PKC Apl II, two of which are in the C2 domain at serine 2 and serine 36. Unlike most PKC autophosphorylation sites, these serines could be phosphorylated in trans. Interestingly, phosphorylation of serine 36 increased binding of the C2 domain to phosphatidylserine membranes in vitro. In cells, PKC Apl II phosphorylation at serine 36 was increased by PKC activators, and PKC phosphorylated at this position translocated more efficiently to membranes. Moreover, mutation of serine 36 to alanine significantly reduced membrane translocation of PKC Apl II. We suggest that translocation of nPKCs is regulated by phosphorylation of the C2 domain. 相似文献
13.
14.
Recent results suggest a role for topoIIalpha (topoisomerase IIalpha) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIalpha was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIalpha is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIalpha with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIalpha, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIalpha. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes. 相似文献
15.
Penrose KJ Garcia-Alai M de Prat-Gay G McBride AA 《The Journal of biological chemistry》2004,279(21):22430-22439
The major phosphorylation sites of the bovine papillomavirus E2 transactivator protein are two serine residues, 298 and 301, that are located in a flexible hinge region between the DNA binding and transactivation domains. Phosphorylation of serine residue 301 promotes ubiquitination and rapid degradation of the E2 protein by the proteasome pathway. To understand the mechanism through which phosphorylation regulates the intracellular levels of this unique papillomavirus regulatory protein, we have carried out an extensive mutational analysis of the region surrounding the phosphorylation sites of the E2 protein. Our results indicate that casein kinase II phosphorylates serine 301. However, phosphorylation of serine 301 is not a sufficient recognition motif for proteasomal degradation; other residues that directly surround the phosphorylation sites are crucial for E2 degradation. The phenotypes of E2 proteins mutated in this region indicate that phosphorylation of serine 301 induces a conformational change that leads to degradation of the E2 protein. In support of this model, circular dichroism studies of the conformational tendencies of peptides from this region indicate that phosphorylation at position 301 decreases the local thermodynamic stability of this region. Thus, this region appears to have evolved to display a marginal local thermodynamic stability that can be regulated by phosphorylation, leading to targeted degradation of the E2 protein. 相似文献
16.
Raghavan Bhuvanakantham Yuen Kuen Cheong Mah-Lee Ng 《Microbes and infection / Institut Pasteur》2010,12(8-9):615-625
West Nile virus (WNV) capsid (C) protein was shown to enter the nucleus via importin-mediated pathway and induce apoptosis although the precise regulatory mechanisms for such events have remained elusive. In this study, it was shown that WNV C protein was phosphorylated by protein kinase C (PKC). PKC-mediated phosphorylation influenced nuclear trafficking of C protein by modulating the efficiency of C protein–importin-α binding. Combination of bio-informatics, site-directed mutagenesis, co-immunoprecipitation, immuno-fluorescence and mammalian two-hybrid analyses showed that phosphorylation at amino acid residues residing near (Ser83) or within (Ser99 and Thr100) the bipartite nuclear localization motif of WNV C protein was essential for efficient interaction between C protein and importin-α. In addition, phosphorylation of WNV C protein by PKC was shown to enhance its binding to HDM2 and could subsequently induce p53-dependent apoptosis. Collectively, this study highlighted that phosphorylation is an important post-translational modification required to execute the functions of C protein. 相似文献
17.
18.
Lifen Yang Guilin Qiao Haiyan Ying Jian Zhang Fei Yin 《Biochemical and biophysical research communications》2010,400(1):16-20
Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser473 in the hydrophobic motif, along with Thr308 in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr308, but the kinase(s) responsible for phosphorylating Akt at Ser473 (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser473 phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser473 in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation. 相似文献
19.
Cell-cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation 下载免费PDF全文
The p10 fusion-associated small transmembrane protein of avian reovirus induces extensive syncytium formation in transfected cells. Here we show that p10-induced cell-cell fusion is restricted by rapid degradation of the majority of newly synthesized p10. The small ectodomain of p10 targets the protein for degradation following p10 insertion into an early membrane compartment. Paradoxically, conservative amino acid substitutions in the p10 ectodomain hydrophobic patch that eliminate fusion activity also increase p10 stability. The small amount of p10 that escapes intracellular degradation accumulates at the cell surface in a relatively stable form, where it mediates cell-cell fusion as a late-stage event in the virus replication cycle. The unusual relationship between a nonstructural viral membrane fusion protein and the replication cycle of a nonenveloped virus has apparently contributed to the evolution of a novel mechanism for restricting the extent of virus-induced cell-cell fusion. 相似文献