首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stone parsley, soybean, sunflower, sweet potato, potato, andadlay cultivated in a Cd2+-containing medium had Cd-bindingcomplexes with molecular weights of about 4,000 in the roottissues. The complexes were similar to the complex previouslyfound in water hyacinth roots in their absorption and CD spectraand their amino acid compositions. The results indicate thewidespread existence of complexes similar to fission yeast Cd-BPlin roots of various plants. (Received June 30, 1986; Accepted December 18, 1986)  相似文献   

2.
Sugar beet (Beta vulgaris L. cv. Monohill) were cultivated ina nutrient solution with different combinations of Ca2+ (36,180, 720 or 3560µM) and Cd2+ (0, 1, 5 or 20µM).The dry and fresh weights, the content of Ca2+ and Cd2+ , sucrose,fructose, glucose and starch in 5-week-old plants was analysedas well as the rate of [14C]-sucrose uptake in discs from 3-month-oldstorage roots. The carbohydrate metabolism was indirectly affectedby the presence of calcium or cadmium. Cadmium caused a diminisheddry weight and carbohydrate concentration. The dry weight wasunaffected by the Ca2+ level but the carbohydrate distributionbetween storage and growth processes was affected; at low Ca2+in the tissue, the growth was retarded and the level of storagecarbohydrate increased, while at high Ca2+ the opposite wasfound. The [14C]-sucrose uptake decreased in tap roots cultivatedat low Ca2+ . Long term exposure to Cd2+ also decreased thesucrose uptake in tap roots. Direct Cd2+ addition to the assaymedium, however, increased the sucrose uptake, probably at thetonoplast, while Ca2+ had no transient effect on the uptake.Cadmium increased the Ca2+ concentration in the plant, but Ca2+did not affect the net-uptake of Cd2+. Key words: Sugar beet, cadmium uptake, calcium uptake, carbohydrate formation, growth  相似文献   

3.
柽柳对镉胁迫的生理生态响应   总被引:4,自引:0,他引:4       下载免费PDF全文
在温室条件下采用营养液培养的方法研究了营养液中Cd2+浓度为0、10、50、200和500 μmol·L -1时,柽柳(短穗柽柳(Tamarix laxa))对重金属镉的吸收和分泌特点。研究结果表明:与对照相比,较低浓度(10 μmol·L -1)镉处理对柽柳的生长量、含水率均没有显著变化,两周培养期间内没有出现镉中毒症状;Cd2+浓度增加至50 μmol·L -1时对柽柳产生了较强的毒害作用,柽柳的生长量、植株含水率均明显下降,在加镉处理第十二天时营养枝开始发黄,出现镉中毒症状。柽柳不同器官镉积累量由大到小依次为:根系>新生营养枝>枝条。研究还发现,柽柳盐腺能够分泌镉,分泌镉的量占营养枝中镉含量的0.5%左右;在较低浓度(0~50 μmol·L-1)时柽柳对镉的分泌量随着培养液中Cd2+浓度的增加而增加,并在50 μmol·L -1镉处理时,分泌物中Cd2+浓度达到本试验中的最高点,然后镉的分泌量开始下降。这一结果说明,尽管泌盐盐生植物——柽柳的盐腺能够分泌重金属镉,但是其数量在植株累积的镉总量中所占甚少,对短穗柽柳耐镉毒害能力贡献不大。  相似文献   

4.
Water hyacinth (Eichhornia crassipes (Mart.) Solms) and salvinia (Salvinia auriculata Aubl.) were exposed to toxic levels of Cd with the objective of evaluating its effect on sulphate uptake and metabolism. Plants were treated with 0 and 5 μmol L−1 Cd for 3 days and, then sulphate uptake, ATP sulfurylase activity, soluble thiol content and Cd-binding complexes were determined. Water hyacinth showed a lower sulphate uptake, but its kinetic parameters were not affected by Cd. In salvinia, however, both Vmax and affinity to sulphate (1/Km) decreased with Cd treatment. The ATP sulfurylase activity increased in Cd-treated plant of both species, except in the roots of salvinia. In the presence of Cd water hyacinth always exhibited higher activity of this enzyme. The total soluble thiol content was always higher in water hyacinth. In Cd treated plants it increased in the leaves of water hyacinth, but decreased in salvinia. Cysteine content increased only in water hyacinth leaves, while γ-glutamylcysteine content increased in the two parts of the plants of both species after Cd treatment, especially in water hyacinth. Glutathione contents, on the contrary, after Cd treatment, reduced in both parts of the plants of water hyacinth but only in the leaves of salvinia. The unidentified thiol fraction content increased with Cd treatment in both species, especially in water hyacinth. Root and leaf extracts of both species showed peaks with maxima at A265/A280. In treated plants these peaks coincided with Cd content peaks indicating the formation of Cd-binding peptides. It was estimated that in the presence of Cd about 97% of Cd was associated with these complexes and water hyacinth had 28% more Cd-binding peptides than salvinia. Despite its lower sulphate uptake, water hyacinth showed higher rates of sulfur reduction and assimilation into soluble thiols. Possibly, glutathione is used in water hyacinth roots to synthesize hitherto unidentified Cd-binding peptides.  相似文献   

5.
镧对镉胁迫下大蒜幼苗生长及镉积累的影响   总被引:2,自引:0,他引:2  
赵胡  李裕红  陈杰 《植物研究》2008,28(4):447-451
采用土培实验研究了镧(La2+)对镉(Cd)胁迫下大蒜幼苗生长及Cd积累的影响。结果表明:低浓度Cd(<5 mg·kg-1)对大蒜生长有微弱的促进作用而高浓度Cd对其有明显抑制作用。外施系列浓度La2+对高浓度Cd胁迫下大蒜幼苗生长具有明显的缓解效应,单株鲜重、干重、根长及地上部分高度均具有明显或不同程度的增加。测定结果表明,Cd主要积累在大蒜根部而向地上部分转运的较少,外施系列浓度La2+对高浓度Cd胁迫下大蒜幼苗根系对Cd积累具有显著的抑制效应,同时也抑制Cd向地上部分转运。从外施La2+对高浓度Cd胁迫下大蒜幼苗生长及大蒜对Cd积累情况来看,La2+的适宜缓解效应浓度是在Cd浓度为20 mg·kg-1时,La2+浓度为10~15 mg·kg-1;在Cd浓度为40 mg·kg-1,La2+浓度为5 mg·kg-1。  相似文献   

6.
Wolterbeek, H. Th. 1987. Relationships between adsorption, chemicalstate and fluxes of cadmium applied as Cd(NO3)2 in isolatedxylem cell walls of tomato.—J. exp. Bot. 38: 419–432. Isolated xylem cell wall pieces were applied as membranes inion diffusion experiments. The cell walls were isolated fromtomato internodes (Lycopersicon esculentum Mill, cv. Tiny Tim)and sealed in a two-compartment diffusion system. In flux andadsorption calculations, the cell wall was regarded as a leakymembrane with parallel fluxes through Donnan Free Space (DFS)and Water Free Space (WFS). During the experiments absorptioninto and diffusion across the walls was determined of Cd2 +, applied as 115Cd(NO3)2. Flux experiments with 82Brindicated that excluded volume effects and path tortuosity resultedin apparent WFS diffusion coefficients in the walls which were0·012 times as high as in water. The free proton concentration in the DFS was shown to be relatedto a complex formation between fixed charges and Cd2 +. Thecell wall permeability for Cd2 + and NO3 varied withapplied and absorbed concentrations, and the Cd2 + flux curveshowed an inflexion point coinciding with a buffered degreeof dissociation of fixed charges in the DFS. The necessary couplingof fluxes of opposite charges resulted in relatively high NO3and small Cd2 + permeability of the DFS for strongly dilutedsolutions (P = 10–4 m s–1 and 10–11 m s–1for NO3 and Cd2 + respectively). The results demonstratethe possible regulatory effects of the cell wall in processesof ion transfer from xylem vessels, or ion uptake in plant tissues. Key words: Cadmium, chemical state, DFS, WFS, ion flux, permeability, xylem cell walls, tomato, bromium, nitrate  相似文献   

7.
A Cd-resistant strain of yeast (Saccharomyces cerevisiae, strain30IN) accumulated Cd with the concomitant synthesis of a Cd-bindingprotein of low molecular weight when grown in Cd2+-containingmedium. Analysis of the amino acid composition, N-terminal sequenceand immunological properties of the protein revealed its structuralhomology to Cu-metallothionein (Cu-MT) in S. cerevisiae 2186,a Cu-resistant strain of yeast (Winge et al. 1985). The synthesisof MT in Cu-resistant strains of yeast is known to be underthe strict control of Cu2+ ions, while that in 301N was inducedboth by Cd2+ and Cu2+ ions. When 301N was precultured for 48h in the presence of 1 mM CuSO4, its resistance to Cu2+ andthe synthesis of MT in response to Cu2+ were enhanced whileanalogous responses to Cd2+ were conversely reduced. These resultssuggest that the synthesis of MT is controlled by Cd2+ and Cu2+in a counteractive manner in strain 301N and, therefore, theregulation of the synthesis of MT plays a role in the adaptationof this strain to conditions when either metal is present. (Received November 1, 1990; Accepted February 22, 1991)  相似文献   

8.
The distribution and accumulation of Cu2+, Zn2+ and Cd2+ ionsin the roots of Polygonum cuspidatum, collected from metalliferousand non-metalliferous habitats, were examined. About 90% ofthe metal ions was located in the cell wall fraction of rootsof plants grown in either type of habitat. The metal-ion exchangecapacity of the cell walls is not specific to the plants frommetalliferous habitats, and there were no significant differencesamong plants from the various habitats. The capacity for Cu2+ions was greater than that for Zn2+ or Cd2+ ions. Cu2+ ionshave a high affinity for the cell wall and, thus, it appearsthat the cell wall is a barrier for the transportation of Cu2+into the cytoplasm. (Received March 10, 1988; Accepted March 17, 1989)  相似文献   

9.
Cysteine, γ-glutamylcysteine, and glutathione and the extractable activity of the enzymes of glutathione biosynthesis, γ-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), were measured in roots and leaves of maize seedlings (Zea mays L. cv LG 9) exposed to CdCl2 concentrations up to 200 micromolar. At 50 micromolar Cd2+, γ-glutamylcysteine contents increased continuously during 4 days up to 21-fold and eightfold of the control in roots and leaves, respectively. Even at 0.5 micromolar Cd2+, the concentration of γ-glutamylcysteine in the roots was significantly higher than in the control. At 5 micromolar and higher Cd2+ concentrations, a significant increase in γ-glutamylcysteine synthetase activity was measured in the roots, whereas in the leaves this enzyme activity was enhanced only at 200 micromolar Cd2+. Labeling of isolated roots with [35S]sulfate showed that both sulfate assimilation and glutathione synthesis were increased by Cd. The accumulation of γ-glutamylcysteine in the roots did not affect the root exudation rate of this compound. Our results indicate that maize roots are at least in part autonomous in providing the additional thiols required for phytochelatin synthesis induced by Cd.  相似文献   

10.
Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.  相似文献   

11.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

12.
Kennedy, C. D. and Gonsalves, F. A. N. 1987. The action of divalentzinc, cadmium, mercury, copper and lead on the trans-root potentialand H+ efflux of excised roots.—J. exp. Bot. 38: 800–817. The action of Zn2+, Cd2+, Hg2+, Cu2+ and Pb2+ ions on the trans-rootpotential and H+ efflux of young excised maize roots has beenstudied. Micro-electrode implantations into root epidermal cellsconfirmed the root outer membranes as the major contributorin the trans-root potential changes. The effects of these ionson H+ efflux were studied over a period of time in a continuousflow cell apparatus, adequate controls allowing for transientinterference due to divalent cations at the pH probe. The addition of Zn2+, 5 to 100 µmol dm–3, to thesolution bathing the roots reduces H+ efflux and depolarizesthe trans-root potential. However, in the presence of Mg2+,0?1 or 1?0 mmol dm–3, not only is this depolarizationinhibited, but hyperpolarization is observed instead. Cd2+ affectstrans-root potential and H+ efflux at a much slower rate thanZn2+, suggesting a lower membrane permeability. Without Mg2+,Cd2+ hyperpolarizes the trans-root potential, but this is bettersustained in its presence. Hyperpolarization did not occur withHg2+, Cu2+ or Pb2+ whether or not Mg2+ was present Hg2+ andto a lesser extent Cu2+ are potent depolarizers of the trans-rootpotential and strongly inhibit H+ efflux. The maximum rates of depolarization observed in the absenceof Mg2+ increase in the order Cd PCMBS <<.lt; Zn Cu< Hg. This is similar to the relative maximum rates of H+inhibition, Pb Cd <<.lt; Zn < Cu < Hg, suggestingconsiderable differences in mode of action and/or membrane permeability.The lower membrane permeability of the sulphydryl reagent PCMBSapparently prevents ready access to the site(s) of action availableto Hg2+. The reductions in trans-root potential and H+ gradients inducedby this range of cations would be detrimental to the acquisitionof nutrients using these gradients as an energy source. In contrast,Zn2+, , in the presence of adequate Mg2+, could be beneficialto nutrient uptake by maintaining a higher membrane potentialthan would occur in its absence. Possible modes of action for the observed effects are discussed. Key words: Trans-root potentials, H+ efflux, heavy metal ions  相似文献   

13.
Enhanced cadmium accumulation in maize roots—the impact of organic acids   总被引:4,自引:0,他引:4  
Low molecular weight organic acids are important components of root exudates and therefore, knowledge regarding the mechanisms of cadmium (Cd) uptake and distribution within plants under the influence of organic acids, is necessary for a better understanding of Cd behavior in the plant–soil system. In this study, acetic and malic acids increased the uptake of Cd by maize (Zea mays L. cv. TY2) roots and enhanced Cd accumulation in shoots under hydroponic conditions. Concentration-dependent net Cd influx in the presence and absence of organic acids could be resolved into linear and saturable components. The saturable component followed Michaelis–Menten kinetics, which indicated that Cd uptake across the plasma membrane was transporter-mediated. While the K m values were similar, the V max values in the presence of acetic and malic acids were respectively 6.0 and 3.0 times that of the control. Zinc transporters were the most probable pathways for Cd accumulation. It was hypothesized that Cd(II)–organic acid complexes associated with the root zone, could decompose and liberate Cd2+ for subsequent absorption by maize roots; and that in the layer of the roots or within the root free space, depletion of Cd2+ was buffered by the presence of Cd(II)–organic acid complexes. Plant response to elevated Cd levels involved overproduction of organic acids in maize roots as a resistance mechanism to alleviate Cd toxicity.  相似文献   

14.

Aims

Contamination of sunflower (Helianthus annuus L.) by cadmium (Cd) is a concern for food and feed safety as this species accumulates Cd to a greater extent than other crops. We examined the relationships between root architecture and Cd2+ uptake by roots.

Methods

We determined and mathematically modelled the longitudinal variation of Cd2+ influx in first order roots of sunflower grown in hydroponics by using short-term exposure to 109Cd-labelled solutions (0.8 to 500 nM). Thereafter, by taking into account the longitudinal variation of the influx, we simulated the uptake of Cd2+ for 24 h by cohorts of roots characterised by various architectural characteristics.

Results

Cd2+ influx at the root tip was on average 2.9 times that of the basal region close to the taproot. The simulations indicated that the total Cd2+ uptake by root cohorts mainly depends on 1/ the root diameter and the number of roots, 2/ the value of the Cd2+ influx at the basal region 3/ the stronger influx at the root tip.

Conclusion

Considering a higher Cd2+ influx at the root tip may be important to understand the relationship between root architecture and Cd2+ uptake by the root system.  相似文献   

15.
16.
The sensitivity of twelve strains of Saccharomyces cerevisiaeto Cd2+ was examined in correlation with the uptake of Cd2+.Strains of S. cerevisiae were grouped into three categoriesdepending on the sensitivity of cells grown on agar-plates containingvarious concentrations of Cd2+. 1) The sensitive group did notgrow in 0.1 mM Cd2+. 2) The sub-tolerant group was capable ofgrowth at 0.3 min Cd2+, but not at 0.4 mM Cd2+. 3) The tolerantgroup was capable of growth at 0.4 mM Cd2+ or higher. In thesestrain groups the increase in sensitivity to Cd2+ was associatedwith an increase in the activity of Cd2+ absorption. 1 This study is dedicated to the late president J. Ashida ofEhime University. (Received November 25, 1982; Accepted February 14, 1983)  相似文献   

17.
Cadmium distribution and chemical fate in soybean plants   总被引:4,自引:1,他引:3       下载免费PDF全文
The distribution and chemical behavior of Cd2+ in tissues and its chemical form in xylem water of soybean plants (cv. Williams) were investigated. Following root absorption, Cd is strongly retained by roots, with only 2% of the accumulated Cd being transported to leaves; as much as 8% was transported to seeds during seed filling. In vivo xylem exudates contained two anionic Cd complexes in addition to inorganic forms of Cd. Once accumulated in root and leaf tissues, Cd rapidly equilibrated between the insoluble, soluble, and organelle fractions. Of the solubles, which contain 50% of the Cd, >50% was associated with components of >10,000 molecular weight, and <8% was associated with <500 molecular weight components. Cadmium accumulated in soybean seeds was primarily associated with cotyledons. Fractionation of seeds showed the soy proteinate and soy whey to contain 32 and 50% of the accumulated Cd, respectively.  相似文献   

18.
The rate of electron transfer from NADH to ferricyanide associatedwith corn root plasma membrane vesicles was not significantlyaffected by the presence of Ca2+, Cd2+, Zn2+, or Co2+. However,unlike Ca2+, other tested divalent cations induced an electrontransfer-dependent increase in light scattering by the vesicles.The efficacy in inducing the light scattering increase followedthe order of Cd2+>Zn2+>Co2+. The extent of the light scatteringchange increased as the concentration of added Cd2+ increased.Using phase contrast microscopy, the increase in light scatteringwas related to an expansion of the vesicles. Accompanying thevolume increase, a decrease of Cd2+ concentration in the externalspace was observed by the use of Arsenazo III, a metallochromophorespecific for divalent cations. Under a specified electron transfercondition, a similar percentage of decrease over a wide rangeof initial Cd2+ concentration was detected. The presence ofA23187 [GenBank] decreased the rate and extent of light scattering increaseand its associated Cd2+ concentration change. However, A23187 [GenBank] had no effect on scattering changes already established by theelectron transfer and Cd2+. These results suggest that the NADHlinked electron transfer reaction may induce a Cd2+ uptake bythe vesicles of corn root plasma membrane with inside-out orientation. (Received September 25, 1995; Accepted December 19, 1995)  相似文献   

19.
Sugar beet seedlings (Beta vulgaris L. cv. Monohill) were grownfor 14 d on a nutrient solution based on the nutrient proportionsin healthy plants. Nutrients were supplied either once at relativelyhigh concentrations, or in small amounts with a daily incrementalincrease of 0?15 or 0?20 in accordance with an exponential growthrate. Cadmium (0, 0?6, 2?3, 50 or 20?0 µmol) was introducedeither by a single addition or in daily increments of 0?15 or0?20. Cadmium uptake, expressed as a percentage of total Cd2+supplied, decreased with increasing total Cd2+ content and withdecreasing availability of nutrients. With a daily supply ofcadmium, net uptake, transport and content per unit of dry weightin roots and shoots were related to the total Cd2+ supplied.Cadmium caused growth retardation, increased root/whole-plantratio, and decreased root-tip respiration and photosynthesis.At high initial nutrient concentrations, Cd2+ decreased thecontents of sucrose, glucose, fructose, and starch per unitof dry weight. The opposite was found if nutrients were addeddaily. In the latter case, the dry weight/fresh weight ratioalso increased. The effects of cadmium were related to [Cd2+]in proportion both to the root absorption area and to the nutrientconcentration. Key words: Sugar beet, mineral provision, cadmium uptake, sugar formation, growth  相似文献   

20.
不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布   总被引:14,自引:0,他引:14  
利用水培试验结合亚细胞组分分级分离和凝胶过滤等技术,研究了水稻根和叶中镉的化学结合形态及其亚细胞和分子分布,比较了低镉积累品种“广源占No.3”和高镉积累品种 “珍桂矮”的差异.结果表明:随着营养液中镉浓度的升高,根和叶亚细胞镉含量显著上升,大部分镉积累在细胞壁(F)和细胞可溶部分(F).高镉积累品种“珍桂矮”根和叶中可溶部分镉含量显著高于低镉积累品种“广源占No.3”.根和叶各种形态镉中,以氯化钠提取态占优势,其次是醋酸提取态,盐酸提取态镉含量最低.与“广源占No.3”相比,“珍桂矮”中迁移性较强的去离子水和乙醇提取态镉比例较高.凝胶过滤结果表明,两种类型的水稻可溶部分镉的出峰位置与样品流份中可溶性蛋白的出峰位置大致相同.可溶部分中的镉大多与分子量为3kD的物质结合,属于植物鳌合肽(PCs)或低分子量物质.“广源占No.3” 根系中镉与PCs配合的组分(Cd-PCs)含量远小于“珍桂矮”.“广源占No.3”细胞可溶部分较低的镉含量以及根系中较少的Cd-PCs形成量,降低了镉的移动及其向地上部转运的可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号