首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression and localization of four heat shock proteins (Hsp70, Hsp86, Hsp90, and Hsp27) were shown in the heart tissue of pigs transported for 6 h. Immunostaining detected the consistent presence of all Hsps in the pig myocardial cells under both transported and normal housing conditions. Immunohistochemical analysis revealed predominance of Hsp70 (significantly highest levels) and Hsp27 in the cytoplasm of myocardial cells. Hsp90 and Hsp86 were expressed both in the cytoplasm and in the nucleus, preferentially in the cytoplasm, of the myocardial cells. In view of their abundant and uniform distributions in the myocardial cells, the expression and distribution patterns of all detected Hsps within the myocardial cells, mostly limited to the cytoplasm, could be related to their chaperone function for cells with important special activities in this study. The identification of all four Hsps in the blood vessel endothelial cells possibly implies that endothelial cells react to ischemia and hypoxia by expressing Hsps. Immunoblot findings suggest that the level of all Hsps decreased in response to stress due to a 6 h journey. The decrease in Hsp levels in the myocardial cells may indicate that the transport stress may have overcharged the repair mechanisms of the cells. Whether this distinct depletion of Hsps contributes to an increased susceptibility to acute heart failure and the sudden death syndrome in transported pigs should be elucidated in future experiments.  相似文献   

2.
3.
4.
5.
6.
7.
Methamphetamine (MAP) and stress both cause a variety of cardiovascular problems. Stress also increases stimulant drug-seeking or drug-taking behavior by both humans and animals. In addition to the physiological effects on circulation, metabolism, and excretion, stress affects subject's responses to stimulant drugs such as MAP. However, the mechanisms underlying the drug–stress interactions remain unknown. In the present study, we assessed the effects of stress on myocardial responses to MAP in mice. Mice were injected with MAP (30 mg/kg) immediately before exposure to water-restraint stress (WRS), which has often been used as a stressor in animal experiments. The combination of MAP with WRS produced a significant increase (p < 0.01) in the leakage of proteins specific to myocardial damage and the levels of cytokines IL-6, TNF-α, and IL-10. The histological findings indicated the possibility that a combination of MAP with WRS induced cardiac myocytolysis. We also examined the expression of heat shock proteins (Hsps), which have cardioprotective effects. Administration of MAP alone significantly stimulated the RNA expressions of Hsp32, 60, 70, and 90 and the protein Hsp70 in cardiac muscles, whereas the expressions due to WRS or MAP plus WRS were not increased. These results reveal the fact that exposure to WRS depresses the induction of Hsps, in particular Hsp70, due to MAP injection, following to enhance MAP-induced myocardial damage. We believe that interactions between MAP and severe stress, including environmental temperature, affect the induction of Hsps, following to susceptibility of hosts to cardiotoxicity due to the stimulant drug.  相似文献   

8.
9.
10.
The aim of this study was to investigate the effects of cold stress on oxidative indexes, immune function, and the expression levels of heat shock protein (Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27) in immune organs of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept under the temperature of (12 ± 1) °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress and three control groups and three treatment groups for chronic cold stress. The results showed that cold stress influence the activities of antioxidant enzymes in the immune organs. The activities of SOD and GSH-Px were first increased then decreased, and activity of total antioxidation capacity (T-AOC) was significantly decreased (P < 0.05) at the acute cold stress in chicks; however, T-AOC activities were significantly increased (P < 0.05) at the chronic cold stress in these tissues. Cold stress induced higher level of malondialdehyde (MDA) in chicken immune organs. In addition, the cytokine contents were increased in cold stress groups. As one protective factor, the expression levels of Hsps were increased significantly (P < 0.05) in both cold stress groups. These results suggested that cold stress induced the oxidative stress in the three tissues and influenced immune function of chicks. Higher expression of Hsps (Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27) may play a role in protecting immune organs against cold stress.  相似文献   

11.
12.
13.
14.
The aim of this study was to elucidate the mechanisms for regulations of cardiac Kv1.5 channel expression. We particularly focused on the role of heat shock proteins (Hsps). We tested the effects of Hsps on the stability of Kv1.5 channels using biochemical and electrophysiological techniques: co-expression of Kv1.5 and Hsp family proteins in mammalian cell lines, followed by Western blotting, immunoprecipitation, pulse-chase analysis, immunofluorescence and whole-cell patch clamp. Hsp70 and heat shock factor 1 increased the expression of Kv1.5 protein in HeLa and COS7 cells, whereas either Hsp40, 27 or 90 did not. Hsp70 prolonged the half-life of Kv1.5 protein. Hsp70 was co-immunoprecipitated and co-localized with Kv1.5-FLAG. Hsp70 significantly increased the immunoreactivity of Kv1.5 in the endoplasmic reticulum, Golgi apparatus and on the cell membrane. Hsp70 enhanced Kv1.5 current of transfected cells, which was abolished by pretreatment with brefeldin A or colchicine. Thus, Hsp70, but not other Hsps, stabilizes functional Kv1.5 protein.  相似文献   

15.
The aim of this study was to investigate the effects of cold stress on the expression levels of heat shock proteins (Hsps90, 70, 60, 40, and 27) and inflammatory factors (iNOS, COX-2, NF-κB, TNF-α, and PTGEs) and oxidative indexes in hearts of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept at the temperature of 12 ± 1 °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress, three control groups, and three treatment groups for chronic cold stress. After cold stress, malondialdehyde level increased in chicken heart; the activity of superoxide dismutase and glutathione peroxidase in the heart first increased and then decreased. The inflammatory factors mRNA levels were increased in cold stress groups relative to control groups. The histopathological analysis showed that heart tissues were seriously injured in the cold stress group. Additionally, the mRNA levels of Hsps (70, 60, 40, and 27) increased significantly (P < 0.05) in the cold stress groups relative to the corresponding control group. Meanwhile, the mRNA level and protein expression of Hsp90 decreased significantly (P < 0.05) in the stress group, and showed a gradually decreasing tendency. These results suggested that the levels of inflammatory factors and Hsps expression levels in heart tissues can be influenced by cold stress. Hsps commonly played an important role in the protection of the heart after cold stress.  相似文献   

16.
The present study was carried out to understand the effect of cortisol on heat shock protein system (Hsps) in the C2C12 and 3T3-L1 cells under co-culture system. Cells were co-cultured by using Transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3T3-L1 cells. Each cell type was grown independently on the Transwell plates. After cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates and inserts containing C2C12 cells transferred to 3T3-L1 plates. Ten micrograms per microliter of cortisol was added to the medium. Following 72 h of treatment, the cells in the lower wells were harvested for analysis. Heat shock proteins (Hsps) such as Hsp27, Hsp70, and Hsp90 were selected for the analysis. The qRT-PCR results showed the significant increase in the mRNA expression of as Hsp27, Hsp70, and Hsp90. In addition, confocal microscopical investigation showed the cortisol treatment increases Hsps expressions in the mono and co-cultured C2C12 and 3T3-L1 cells. From the results, we concluded that the cortisol increases Hsps expression in the co-cultured C2C12 and 3T3-L1 cells, which is differed from one-dimensional mono-cultured C2C12 and 3T3-L1 cells.  相似文献   

17.
Yu J  Bao E  Yan J  Lei L 《Cell stress & chaperones》2008,13(3):327-335
The objective of this study was to investigate the kinetics of Hsp60, Hsp70, Hsp90 protein, and messenger RNA (mRNA) expression levels and to correlate these heat shock protein (Hsp) levels with tissue damage resulting from exposure to high temperatures for varying amounts of time. One hundred broilers were heat-stressed for 0, 2, 3, 5, and 10 h, respectively, by rapidly increasing the ambient temperature from 22 +/- 1 degrees C to 37 +/- 1 degrees C. Obvious elevations of plasma creatine kinase indicate damage to myocardial cells after heat stress. Hsp70 and Hsp90, and their corresponding mRNAs in the heart tissue of heat-stressed broilers, elevated significantly after 2 h of heat exposure and decreased quickly with continued heat stress. However, the levels of hsp60 mRNA in the heart of heat-stressed broilers increased sharply (P < 0.01) at 2 h of heat stress but then decreased quickly after 3 h, while the level of Hsp60 protein in the heart increased (P < 0.01) at 2 h of heat stress and maintained a high level throughout heat exposure. The results indicate that the elevation of the three Hsps, especially Hsp60 in heart, may be important markers at the beginning of heat stress and act as protective proteins in adverse environments. The reduction of Hsp signals in the cytoplasm of myocardial cells implies that myocardial cell lesions may have an adverse impact on the function of Hsps during heat stress. Meanwhile, the localization of Hsp70 in blood vessels of broiler hearts suggests another possible mechanism for protection of the heart after heat exposure.  相似文献   

18.
19.
20.
Development of effective therapeutic strategies to eliminate cancer stem-like cells (CSCs), which play a major role in drug resistance and disease recurrence, is critical to improve cancer treatment outcomes. The current investigation was undertaken to examine the effectiveness of the combination treatment of Hsp90 inhibitor and SIRT1 inhibitor in inhibiting the growth of chemo-resistant stem-like cells isolated from human chronic myeloid leukemia K562 cells. Inhibition of SIRT1 by use of SIRT1 siRNA or SIRT1 inhibitors (amurensin G and EX527) effectively potentiated sensitivity of Hsp90 inhibitors (17-AAG and AUY922) in CD44high K562 stem-like cells expressing high levels of CSC-related molecules including Oct4, CD34, β-catenin, c-Myc, mutant p53 (mut p53), BCRP and P-glycoprotein (P-gp) as well as CD44. SIRT1 depletion caused significant down-regulation of heat shock factor 1 (HSF1)/heat shock proteins (Hsps) as well as these CSC-related molecules, which led to the sensitization of CD44high K562 cells to Hsp90 inhibitor by SIRT1 inhibitor. Moreover, 17-AAG-mediated activation of HSF1/Hsps and P-gp-mediated efflux, major causes of Hsp90 inhibitor resistance, was suppressed by SIRT1 inhibitor in K562-CD44high cells. Our data suggest that combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be an effective therapeutic approach to target CSCs that are resistant to current therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号