首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify behaviorally significant differences in bone structure it is first necessary to control for the effects of body size and body shape. Here the scaling of cross-sectional geometric properties of long bone diaphyses with different "size" measures (bone length, body mass, and the product of bone length and body mass) are compared in two modern human populations with very different body proportions: Pecos Pueblo Amerindians and East Africans. All five major long bones (excluding the fibula) were examined. Mechanical predictions are that cortical area (axial strength) should scale with body mass, while section modulus (bending/torsional strength) should scale with the product of body mass and moment arm length. These predictions are borne out for section moduli, when moment arm length is taken to be proportional to bone length, except in the proximal femoral diaphysis, where moment arm length is proportional to mediolateral body breadth (as would be expected given the predominance of M-L bending loads in this region). Mechanical scaling of long bone bending/torsional strength is similar in the upper and lower limbs despite the fact that the upper limb is not weight-bearing. Results for cortical area are more variable, possibly due to a less direct dependence on mechanical factors. Use of unadjusted bone length alone as a "size" measure produces misleading results when body shape varies significantly, as is the case between many modern and fossil hominid samples. In such cases a correction factor for body shape should be incorporated into any "size" standardization.  相似文献   

2.
Finite element models were used to predict the structural consequences of transcortical holes through long bones loaded in torsion. Several parameters were investigated including hole size, anelastic behavior of the bone, cortical wall thickness, cortical wall symmetry, curvature along the bone's long axis and the axial length of the defect. Finite element model predictions of percent intact bone strength were compared to experimental data for sheep femora with transcortical drill holes loaded to failure in torsion. Hole size was expressed as hole diameter divided by the outer bone diameter. Linear finite element model predictions were in conservative agreement with the experimental data for large hole sizes. A transcortical hole with a diameter 50% of the outer bone diameter reduced the torsional strength by 60%. However, the linear models predict a 40% drop in strength for small holes whereas in vitro data suggest that small holes have no significant effect on strength. Models which represent non-linear anelastic behavior in bone over-predicted torsional strengths. Asymmetric cortical wall thickness and long bone bowing have minor effects, while the length of an elongated defect strongly influences the torsional strength. Strength reductions are greatest for bones with thin cortical walls.  相似文献   

3.
To address the effects of an evolutionary increase in body size on long bone skeletal allometry, scaling patterns relating body mass, bone length, limb length, midshaft diameters, and cross-sectional properties of the humerus and femur were analyzed for four species of scansorial mustelids. Humeral and, to a lesser extent, femoral allometry is consistent with expectations of elastic similarity: bone and limb length scale with negative allometry on body mass while bone robusticity (cross-sectional parameters against bone length) scales with strong positive allometry. Differences between fore- and hindlimb scaling patterns, however, are observed, with size-dependent increases in forelimb length and humeral strength and robusticity exceeding those of the hindlimb and femur. It is hypothesized that this greater fore- than hindlimb lengthening results in postural modifications that serve to straighten the hindlimb of larger bodied scansorial mustelids relative to smaller mustelids. Straightening of hindlimb joints would more precisely align the long axis of the femur with peak (vertical) ground reaction forces, thereby accounting for the reduction in relative bending stresses acting on the femur compared to the humerus. J. Morphol. 235:121–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
5.
A longitudinal defect dramatically alters the stress distribution within a long bone. The altered stress distribution can influence the structural properties of the bone and the stimulus for repair and remodeling of the defect and the surrounding bone. For applied torsion, the defect interrupts the normal shear flow around the bone. Reversal of the shear flow along the inner cortex of the bone is the primary characteristic of the "open-section" effect. Stress concentration effects also produce large stresses at the defect corners. A finite element model of a femur mid-diaphysis with a rectangular defect in the posterior cortex was developed to quantify the femur stress distribution and torsional stiffness for defect widths ranging from one-tenth of the femur outer diameter (0.1 OD) to 0.3 OD, and defect lengths ranging from 0.5 to 5 OD. Defects with a length of 1 OD or shorter had little influence on the femur torsional stiffness or the femur shear-stress distribution. The torsional stiffness decreased most dramatically as the defect length increased from 2 to 3 OD, but began to approach an asymptote near 5 OD. Shear flow reversal peaked at the center of the defect for defects longer than 1 OD, and the magnitude of the reversal began to approach an asymptote near 5 OD. For each defect, the largest stresses within the bone, developed at the defect corners. The results indicate that the open-section effect decreases the torsional stiffness and stress concentration effects decrease the torsional strength of a long bone with a longitudinal defect.  相似文献   

6.
Comparative studies of long bone biomechanics in primates frequently use the polar moment of inertia (J ) as a variable reflecting overall mechanical rigidity, average bending rigidity, or resistance to torsional shear stresses. While the use of this variable for characterizing the first two properties is appropriate, it is potentially a highly misleading measure of torsional resistance. Errors result from violations of assumptions required for the use of the polar moment of inertia; in particular, the predictive utility of J diminishes with departures from axial symmetry (i.e., a cylindrical cross-sectional shape). The magnitude of these errors is estimated both theoretically and experimentally. It is argued that the use of the polar moment of inertia for estimating long bone torsional rigidity should be restricted to samples of relatively invariant and/or cylindrical geometry. Alternative measures for torsional resistance are evaluated and reviewed.  相似文献   

7.
The functional adaptation of juvenile mammalian limb bone to mechanical loading is necessary to maintain bone strength. Diaphyseal size and shape are modified during growth through the process of bone modeling. Although bone modeling is a well-documented response to increased mechanical stress on growing diaphyseal bone, the effect of proximodistal location on bone modeling remains unclear. Distal limb elements in cursorial mammals are longer and thinner, most likely to conserve energy during locomotion because they require less energy to move. Therefore, distal elements are hypothesized to experience greater mechanical loading during locomotion and may be expected to exhibit a greater modeling response to exercise. In this study, histomorphometric comparisons are made between femora and tibiae of mice treated with voluntary exercise and a control group (N = 20). We find that femora of exercised mice exhibit both greater bone growth rates and growth areas than do controls (P < 0.05). The femora of exercised mice also have significantly greater cortical area, bending rigidity, and torsional rigidity (P < 0.05), although bending and torsional rigidity are comparable when standardized by bone length. Histomorphometric and cross-section geometric properties of the tibial midshaft of exercised and control mice did not differ significantly, although tibial length was significantly greater in exercised mice (P < 0.05). Femora of exercised mice were able to adapt to increased mechanical loading through increases in compressive, bending, and torsional rigidity. No such adaptations were found in the tibia. It is unclear if this is a biomechanical adaptation to greater stress in proximal elements or if distal elements are ontogenetically constrained in a tradeoff of bone strength of distal elements for bioenergetic efficiency during locomotion.  相似文献   

8.
The allometric relationship of stem length L with respect to mean stem diameter D was determined for 80 shoots of each of three columnar cactus species (Stenocereus thurberi, Lophocereus schottii, and S. gummosus) to determine whether this relationship accords with that predicted by each of three contending models purporting to describe the mechanical architecture of vertical shoots (i.e., geometric, stress, and elastic similitude, which predict L proportional to D(alpha), with alpha = 1/1, 1/2, and 2/3, respectively). In addition, anatomical, physical, and biomechanical stem properties were measured to determine how the stems of these three species maintain their elastic stability as they increase in size. Reduced major axis regression of L with respect to D showed that alpha = 2.82 ± 0.14 for S. thurberi, 2.32 ± 0.19 for L. schottii, and 4.21 ± 0.31 for S. gummosus. Thus, the scaling exponents for the allometry of L differed significantly from that predicted by each of the three biomechanical models. In contrast, these exponents were similar to that for the allometry previously reported for saguaro. Analyses of biomechanical data derived from bending tests performed on 30 stems selected from each of the three species indicated that the bulk stem tissue stiffness was roughly proportional to L2, while stem flexural rigidity (i.e., the ability to resist a bending force) scaled roughly as L3. Stem length was significantly and positively correlated with the volume fraction of wood, while regression analysis of the pooled data from the three species (i.e., 90 stems) indicated that bulk tissue stiffness scaled roughly as the 5/3-power of the volume fraction of wood in stems. These data were interpreted to indicate that wood served as the major stiffening agent in stems and that this tissue accumulates at a sufficient rate to afford unusually high scaling exponents tot stem length with respect to stem diameter (i.e., disproportionately large increments of stem length with respect to increments in stem diameter). Nevertheless, the safety factor against the elastic failure of stems (computed on the basis of the critical buckling height divided by actual stem length) decreased with increasing stem size tot each species, even though each species maintained an average safety factor equal to two. We speculate that the apparent upper limit to plant height calculated for each species may serve as a biomechanical mechanism for vegetative propagation and the establishment of dense plant colonies by means of extreme stem flexure and ultimate breakage, especially for S. gummosus.  相似文献   

9.
Assuming some optimization of bone structure to applied mechanical loadings in vivo , different killing and feeding behaviours in carnivores should be reflected in observed differences in cross-sectional shape of their mandibular corpora. Section moduli are used to gauge the magnitudes of bending moments in the mandibular corpus and, when dentary length is controlled, the magnitudes of forces applied to the corpus. Comparisons are made of section moduli at the P3P4 and P4M1 interdental gaps among canids, felids and hyaenids; in canids only, the M1M2 interdental gap was also studied. Local variations in loadings are identified by comparing the section moduli at adjacent loci along the corpus within each family.
The findings of this study show that the precarnassial corpora of canids and hyaenids have greater strength in bending than the corpora of felids of similar body weight. This is taken to reflect relatively greater bending moments under loading in the corpora of canids and hyaenids due, in part, to their elongate dentaries (relative to body weight). Relative to dentary length , however, the precarnassial corpora of felids and hyaenids have much greater strength in bending than the corpora of canids. These scaling relationships appear to reflect the high customary forces (i.e. not moments) applied to the precarnassial corpora of felids and hyaenids with sustained canine killing bites and with bone ingestion using the premolars, respectively. An increase in bending strength of the corpus caudal to the camassial blade in canids is interpreted to be an adaptation for bone-crushing with the postcarnassial molars.  相似文献   

10.
BACKGROUND AND PURPOSE: Use of rabbits in orthopedic investigations is common. In this study, focus is on factors that influence bone healing and on distraction osteogenesis. Biomechanical characteristics of two external fixator systems (Orthofix device and Hoffmann device) for long bones were tested. METHODS: Twelve freshly dissected tibiae were obtained from six skeletally mature New Zealand White rabbits, and four-point bending stiffness in two planes (90 and 180 degrees to the fixator pins) and torsional stiffness and strength of the bone-fixator complex were evaluated by use of a material testing machine. RESULTS: In four-point bending, Orthofix device had higher stiffness and strength, compared with Hoffmann device. When the load was applied 180 degrees to the pins, both devices had higher stiffness, compared with that at 90 degrees. In torsional testing, Orthofix device had significantly higher stiffness and strength. CONCLUSIONS: Significant differences in structural properties between the two systems were evident. Loading direction and gap conditions were important factors in determining properties of the systems. Therefore, type of external fixation system and fixation technique should be considered when designing experiments, using the rabbit long bone model.  相似文献   

11.
Bone curvature: sacrificing strength for load predictability?   总被引:4,自引:0,他引:4  
Nearly all long bones of terrestrial mammals that have been studied are loaded in bending. Yet bending requires greater bone mass than axial compression for effective support of equivalent static loads. Most long bones, in fact, are curved along their length; their curvature augmenting rather than diminishing stresses developed due to bending. The most "efficient" design of a bone (maximal strength per unit mass) should be a form which is straight and resists axial compression. Bone curvature and the bending developed in the long bones of most species studied, therefore, poses a paradox in design. However, under natural conditions an animal's skeleton must support a range of dynamic loads that vary in both direction and magnitude. Thus, improved predictability of dynamic loading should represent an important feature in the design of the bone, in addition to its absolute strength. We present an explanation of long bone curvature, based on the conditions of stability for bending vs. axial compression in a column, that describes this apparent design paradox as a mechanism for improving the predictability of loading direction (and, consequently, the pattern of stresses within the bone). Our hypothesis argues that in order to understand the design "effectiveness" of long bone shape the role of the bone as a structural unit must be redefined to one in which bone strength is optimized concurrently with loading predictability. In agreement with our hypothesis, bone curvature appears to meet this requirement.  相似文献   

12.
This study examines the allometric scaling relationships of the cetacean humerus, radius, and ulna. Bone lengths and diameters were measured for 20 species of odontocete and three species of mysticete cetaceans, representing eight of the nine extant cetacean families. The scaling of individual bone proportions (bone length vs. cranio-caudal diameter, bone length vs. dorso-ventral diameter), and of individual bone dimensions against estimated body mass, are compared to models of geometric and elastic similarity. The geometric similarity model describes the scaling relationship of bone length vs. cranio-caudal diameter and body mass vs. cranio-caudal diameter for the humerus only; geometric similarity also describes the scaling relationship of body mass vs. bone length for all three bones. None of the scaling relationships fits the elastic similarity model. The scaling relationships of bone length vs. dorso-ventral diameter for all three bones, and bone length vs. cranio-caudal diameter for the radius and ulna, exhibit negative allometry, indicating that large bones are less robust than small bones. Negative allometry of structural support elements has not been previously described for terrestrial mammals or plants. The high relative swimming speeds of small delphinids may generate sufficient stresses to require more robust bones relative to those of larger whales. © 1994 Wiley-Liss, Inc.  相似文献   

13.
A new Monte Carlo (MC) algorithm is proposed for simulating inextensible circular chains with finite twisting and bending rigidity. This new algorithm samples the relevant Riemann volume elements in a uniform manner, when the constraining potential vanishes. Simulations are performed for filaments comprising 170 subunits, each containing approximately 28 bp, which corresponds to a DNA length of 4770 bp. The bending rigidity is chosen to yield a persistence length, P = 500 A, and the intersubunit potential is taken to be a hard-cylinder potential with diameter d = 50 A. This value of d yields the same second virial coefficient as the electrostatic potential obtained by numerical solution of the Poisson-Boltzmann equation for 150 mM salt. Simulations are performed for unknotted circles and also for trefoil knotted circles using two different values of the torsional rigidity, C = (2.0 and 3.0) x 10(-19) dyne cm2. In the case of unknotted circles, the simulated supercoiling free energy varies practically quadratically with linking difference delta l. The simulated twist energy parameter ET, its slope dET/dT, and the mean reduced writhe <w>/delta l for C = 3 x 10(-19) dyne cm2 all agree well with recent simulations for unknotted circles using the polygon-folding algorithm with identical P, d, and C. The simulated ET vs. delta l data for C = 2.0 x 10(-19) dyne cm2 agree rather well with recent experimental data for p30 delta DNA (4752 bp), for which the torsional rigidity, C = 2.07 x 10(-19) dyne cm2, was independently measured. The experimental data for p30 delta are enormously more likely to have arisen from C = 2.0 x 10(-19) than from C = 3.0 x 10(-19) dyne cm2. Serious problems with the reported experimental assessments of ET for pBR322 and their comparison with simulated data are noted. In the case of a trefoil knotted DNA, the simulated value, (ET)tre, exceeds that of the unknotted DNA, (ET)unk, by approximately equal to 1.40-fold at magnitude of delta l = 1.0, but declines to a plateau about 1.09-fold larger than (ET)unk when magnitude of delta l > or = 15. Although the predicted ratio, (ET)tre/(ET)unk approximately equal to 1.40, agrees fairly well with recent experimental measurements on a 5600-bp DNA, the individual measured ET values, like some of those reported for pBR322, are so large that they cannot be simulated using P = 500 A, d = 50 A, and any previous experimental estimate of C.  相似文献   

14.
Fluoride exposure in vivo can reduce the material strength of bone, an effect that has been attributed to a change in mineral structure. An in vitro model of fluoride exposure offers the potential to study directly the effects of fluoride on bone mineral. Previous investigators have reported that soaking bones in sodium fluoride in vitro reduces bone strength. However, long soaking times and the absence of physiological buffering ions from their treatment solutions may have caused mineral dissolution that contributed to the decrease in bone strength. Our objectives were to further characterize the effects of in vitro fluoride exposure on bone mechanical properties and to determine if the changes reported in previous studies of bovine cortical bone would be observed for whole rodent bones. We soaked 60 mouse femora in sodium fluoride solutions, with and without physiological buffering ions, and evaluated their torsional and bending properties. Fluoride soaked bones had a 30-fold increase in fluoride content and a 23% increase in water content compared to controls. These changes were associated with average reductions in ultimate load of 45%, reductions in rigidity of 70%, and increases in deformation to failure of 80%. The effect of fluoride was similar for bones treated in buffered and non-buffered solutions, and was observed in both torsion and bending. Our findings confirm those of previous studies and highlight the strong effect that in vitro fluoride exposure has on bone mechanical properties. The in vitro model of fluoride exposure offers a tool to further study the effects of ion substitution in bone.  相似文献   

15.
The aims of this study were to describe the curvature of anthropoid limb bones quantitatively, to determine how limb bone curvature scales with body mass, and to discuss how bone curvature influences static measures of bone strength. Femora and humeri in six anthropoid genera of Old World monkeys, New World monkeys, and gibbons were used. Bone length, curvature, and cross-sectional properties were incorporated into the analysis. These variables were obtained by a new method using three-dimensional morphological data reconstructed from consecutive CT images. This method revealed the patterns of curvature of anthropoid limb bones. Log-transformed scaling analyses of the characters revealed that bone length and especially bone curvature strongly reflected taxonomic/locomotor differences. As compared with Old World monkeys, New World monkeys and gibbons in particular have a proportionally long and less curved femur and humerus relative to body mass. It is also revealed that the section modulus relative to body mass varies less between taxonomic/locomotor groups in anthropoids. Calculation of theoretical bending strengths implied that Old World monkeys achieve near-constant bending strength in accordance with the tendency observed in general terrestrial mammals. Relatively shorter bone length and larger A-P curvature of Old World monkeys largely contribute to this uniformity. Bending strengths in New World monkeys and gibbons were, however, a little lower under lateral loading and extremely stronger and more variable under axial loading as compared with Old World monkeys, due to their relative elongated and weakly curved femora and humeri. These results suggest that arboreal locomotion, including quadrupedalism and suspension, requires functional demands quite dissimilar to those required in terrestrial quadrupedalism.  相似文献   

16.
Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE(2)) on bone geometry and torsional strength. C57BL/6 mice were exposed to DES, 0.1 μg/kg/day, BPA, 10 μg/kg/day, EE(2), 0.01, 0.1, or 1.0 μg/kg/day, or vehicle from Gestation Day 11 to Postnatal Day 12 via a mini-osmotic pump in the dam. Developmental Xenoestrogen exposure altered femoral geometry and strength, assessed in adulthood by micro-computed tomography and torsional strength analysis, respectively. Low-dose EE(2), DES, or BPA increased adult femur length. Exposure to the highest dose of EE(2) did not alter femur length, resulting in a nonmonotonic dose response. Exposure to EE(2) and DES but not BPA decreased tensile strength. The combined effect of increased femur length and decreased tensile strength resulted in a trend toward decreased torsional ultimate strength and energy to failure. Taken together, these results suggest that exposure to developmental exposure to environmentally relevant levels of xenoestrogens may negatively impact bone length and strength in adulthood.  相似文献   

17.
The SB region of the human major histocompatibility complex (MHC) has been cloned from cosmid and lambda phage libraries made from the human B-lymphoblastoid cell line Priess (DR4/4, DC4/4, SB3/4). Two alpha genes and two beta genes are encoded in the 100 kb long SB region in the order SB alpha-SB beta-SX alpha-SX beta. The SB alpha and SB beta genes encode the alpha and beta subunits of the SB subset of class II MHC molecules. Both the SX alpha and the SX beta genes are pseudogenes in the haplotype examined. From the isolated clones, the two haplotypes of the Priess cell line, SB3 and SB4, are distinguished by nucleotide sequencing and blot hybridization analyses. Restriction site polymorphisms between the SB3 and SB4 clones were observed only in relatively small regions of the SB beta and SX beta genes. A mouse macrophage cell line was transfected with one of the cosmid clones containing both SB alpha and SB beta genes. Expression of the alpha and beta genes was detected by fluorescene-activated cell sorting (FACS) and two-dimensional gel electrophoresis using SB-specific monoclonal antibodies.  相似文献   

18.
The ultimate compressive strength and modulus of elasticity of femoral cortical bone from adult geese (Anser anser), were determined by sex and by quadrant by compressing small right circular cylinders which were 2.4 mm in height and 0.8 mm in diameter. The average ultimate compressive strength was 183 +/- 29 MPa. The average modulus of elasticity was 13.2 +/- 3.4 GPa. The bending strength and bending modulus of elasticity were determined by a three point bend test on rectangular prisms which had the approximate dimensions 0.75 mm X 0.75 mm X 25 mm. The average bending strength was 263 +/- 44 MPa while the average bending modulus was 19.6 +/- 3.1 GPa. The calcium content was determined by atomic absorption spectrophotometry and no correlation was found with the mechanical properties. The histology of the cortical bone was examined both quantitatively and qualitatively. A unique type of Haversian bone is described. Goose bone was found to be morphologically similar to adolescent human bone and to have mechanical properties similar to those of adult human bone.  相似文献   

19.
In vitro comparative testing of fracture fixation implants is limited by the highly variable material properties of cadaveric bone. Bone surrogate specimens are often employed to avoid this confounding variable. Although validated surrogate models of normal bone (NB) exist, no validated bone model simulating weak, osteoporotic bone (OPB) is available. This study presents an osteoporotic long-bone model designed to match the lower cumulative range of mechanical properties found in large series of cadaveric femora reported in the literature. Five key structural properties were identified from the literature: torsional rigidity and strength, bending rigidity and strength, and screw pull-out strength. An OPB surrogate was designed to meet the low range for each of these parameters, and was mechanically tested. For comparison, the same parameters were determined for surrogates of NB. The OPB surrogate had a torsional rigidity and torsional strength within the lower 2% and 16%, respectively, of the literature based cumulative range reported for cadaveric femurs. Its bending rigidity and bending strength was within the lower 11% and 8% of the literature-based range, respectively. Its pull-out strength was within the lower 2% to 16% of the literature based range. With all five structural properties being within the lower 16% of the cumulative range reported for native femurs, the OPB surrogate reflected the diminished structural properties seen in osteoporotic femora. In comparison, surrogates of NB demonstrated structural properties within 23-118% of the literature-based range. These results support the need and utility of the OPB surrogate for comparative testing of implants for fixation of femoral shaft fractures in OPB.  相似文献   

20.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号