首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During studies aimed at isolating myosin-specific genomic clones in Dictyostelium, we probed a lambda genomic library with a chicken myosin light-chain sequence (pML10). Many lambda recombinant Dictyostelium clones hybridized to the pML10 cDNA insert, indicating that this sequence was reiterated in the Dictyostelium genome. It was found that the 3'-noncoding region (pML10-NC) alone was responsible for these results. Dictyostelium DNA contained approximately 65 copies of a sequence(s) similar but not identical to that of pML10-NC. Southern blot analysis showed that pML10-NC hybridized to many Dictyostelium genomic DNA fragments of varying sizes generated by digestion with EcoRI, HindIII, or AluI. In addition, each of the Dictyostelium clones was different in its size, restriction map, and flanking sequences. It seems likely, therefore, that the sequences which hybridized to pML10-NC are scattered throughout the Dictyostelium genome and similar but not identical to each other or to pML10-NC. Thus, probing with pML10-NC has allowed us to select a family of closely related but not identical sequences. These D. discoideum sequences are not found in other slime mold species. No RNA complementary to pML10-NC was found in vegetative cells, 18 h culmination stage, spores, or 1- and 2-h germinating spores. pML10-NC-related sequences were present in two other Dictyostelium species but were absent in the related genus Polysphondylium.  相似文献   

2.
Ten clones containing the actively transcribed mobile dispersed gene Dm255 and its flanking sequences were selected from the HindIII bank of the Drosophila melanogaster genome. The Dm225 sequences present in these clones were identical while the flanking sequences were different in all of the clones analysed. Four of them contained, in addition to Dm225, other DNA sequences binding high amounts of cytoplasmic poly(A) + RNA. The properties of these new genes are similar to those of Dm255: they are also actively transcribed, multiple in copies, scattered throughout the genome, and located at varying genome sites which also were scattered throughout the whole genome of D. melanogaster. Thus, different mobile dispersed genes often appear as closely apposing units forming gene clusters in the genome.  相似文献   

3.
A repetitive DNA sequence was isolated from a Dictyostelium discoideum genomic plasmid library of BglII-digested DNA ligated to the BamHI site in pBR322. This clone, called pBS582, hybridized to a large number of phage lambda Dictyostelium genomic clones. Southern blot analysis indicated that pBS582 DNA hybridized to many differently sized genomic DNA fragments generated by digestion with Eco RI, AvaI, or HindIII. Restriction maps of pBS582 and five genomic clones showed that the flanking regions of each of the genomic clones were different. These findings indicate that the sequence specific to pBS582 is scattered throughout the Dictyostelium genome and is reiterated approximately 100 times in the haploid genome. Northern blot analysis revealed that RNA which hybridized to pBS582 DNA was present during all stages of growth and development and did not seem to be developmentally regulated. Southern blot analysis of DNAs from other slime molds (D. giganteum, D. purpureum, and Polysphondylium violaceum) were performed to determine whether the pBS582 sequence was present in other species of slime molds. Hybridization of pBS582 was observed to DNA from the two Dictyostelium species but not to Polysphondylium. It may thus be possible to use hybridization of specific sequences as a biochemical tool to study the relatedness of different slime mold species and their molecular taxonomy.  相似文献   

4.
5.
D M Peffley  M L Sogin 《Biochemistry》1981,20(14):4015-4021
Using a total tRNA population labeled with 32P, we have cloned a number of tRNA genes from Dictyostelium discoideum. A partial sequence of a cloned 1250-base-pair DNA insert, pDT-513, revealed the occurrence of a putative tRNATrp gene. In addition to the cloverleaf secondary structure, the tRNATrp gene contained all of the invariant and semiinvariant residues found in most tRNA sequences and has a 13-base-pair intron which is located one base removed from the 3' residue of the anticodon. The genomic distribution of the tRNA gene and its flanking sequences was examined via Southern annealing experiments. The structural gene is represented on at least six EcoRI fragments in the D. discoideum genome. Sequences flanking the 5' terminus of the cloned gene are repeated many times in the genome while the sequence flanking the 3' terminus of the pDT-513 DNA insert structural tRNA gene is present only once in the genome.  相似文献   

6.
An rDNA size class in the genome of the nematode Ascaris lumbricoides is described which is interrupted by a 4.5-kb long intervening sequence located in the 26S coding region. This molecular form occurs in approximately 15 copies per haploid genome and amounts to approximately 5% of the total nuclear rDNA. Intervening sequences are present only in the 8.8-kb rDNA, but not in the 8.4-kb rDNA repeating units of A. lumbricoides. Cloning of the interrupted rDNA units revealed, in addition to the main 4.5-kb insertion, shorter intervening sequences of 4-kb and 119-bp length. Both shorter rDNA forms are present in the single copy range of the haploid genome. Sequence analyses of the intervening sequence/rDNA junctions show an identical right-hand junction for all of the three different rDNA forms. The two shorter intervening sequences are a coterminal subset of the right-hand end of the main 4.5-kb insertion, whereas all three insertions have a different left-hand junction with the coding region of rDNA. Each intervening sequence is flanked by a short direct repeat of variable length, being only once present in the uninterrupted rDNA. The intervening sequences of A. lumbricoides show striking similarity to the organization of type I insertion family in dipteran flies, even though they are inserted at different positions in the 26S coding region. Additional rDNA intervening sequences may be present outside of the rDNA cluster, but in not more than 15-20 homologous copies per haploid genome.  相似文献   

7.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

8.
转基因抗虫棉Bt基因插入区碱基组成分析   总被引:12,自引:0,他引:12  
利用TAIL-PCR的方法克隆不同来源的转基因抗虫棉中外源基因插入区的侧翼序列并对其进行序列和结构分析,结果表明,同一个较基因的单构自交得到的不同株系中外源基因插入区的两侧DNA序列完全相同,不同的转基因抗虫棉虫的外源基因插入位置各不相同,不同来源的转基因品种外源基因插入的上游侧翼片段含有一段残留质粒片段,外源基因插入的下游侧翼片段为富含AT碱基结构,其中泗棉3号转基因抗虫品系中下游侧翼片段的AT碱基高达92%,Southern杂交结果显示这些侧翼序列为高AT含量的多拷贝序列,序列中没有发现拓扑异构酶的结合位点。  相似文献   

9.
Summary As the ciliated protozoan Tetrahymena thermophila develops a new macronucleus (MAC) from products of its micronucleus (MIC), several repetitive sequences are eliminated from the MAC genome. Four MIC DNA clones containing repetitive sequences that are eliminated from the MAC were obtained. One clone contains a representative from each of three families of eliminated sequences. One, present in 200–300 copies in the MIC, is almost completely eliminated from the MAC. A second, present in approximately 50 copies in the MIC, is scattered throughout the genome, although up to half of the family members examined could be localized to chromosome 2. Approximately one tenth of the members of this less repetitive family persist in the MAC while the rest are eliminated. The third type of eliminated sequence has three to four members, all of which are eliminated from the MAC. Three of the members are located on three of the five MIC chromosomes, and one could not be mapped. This sequence is clustered with the other two families of sequences in at least three of the four sites. All three types of eliminated sequences are found in similar arrangements in the MIC of several different inbred strains of T. thermophila.  相似文献   

10.
Three repeated sequence clones, pAS1(1.0 Kb), pAS2(1.8 Kb) and pAS12(2.5 Kb), were isolated fromAegilops squarrosa (Triticum tauschii). The inserts of the three clones did not hybridize to each other. Two of the clones, pAS2 and pAS12, contain repeated sequences which were distributed throughout the genome. The clone pAS1 sequence was more restricted and was located in specific areas on telomeres and certain interstitial sites along the chromosome length. This cloned sequence was also found to be restricted to the D genome at the level ofin situ hybridization. The pAS1 sequence will be useful in chromosomal identification and phylogenetic analysis. All three clones will allow assessment of genome plasticity inAegilops squarrosa. Nuclear DNA content varies over a range of 10,000 fold among all organisms (Nagl et al., 1983). Among angiosperms, at least a 65-fold range in genome size occurs in diploid species (Sparrow, Price and Underbrink, 1972; Bennett, Smith and Heslop-Harrison, 1982). This DNA variation has been reported within families, genera, and species (Rothfels et al., 1966; Rees and Jones, 1967; Miksche, 1968; Price, Chambers and Bachmann, 1981). Much of the interspecific variation in genome size among angiosperms appears to be due to amplification and/or deletion of DNA within chromosomes. The variation in genome size does not appear to result in changes in the number of coding genes (Nagl et al., 1983). While the number of coding genes, with the exception of rDNA in specific examples, appears to remain constant, the remaining non-coding regions are quite flexible. This non-coding DNA encompasses over 99% of the plant genome and consists of sequences that exist as multiple copies throughout the genome and are identified as repeated DNA sequences (Flavell et al., 1974). Flavell et al. (1974) have reported that increasing genome size in higher plants is associated with increasing repetitive DNA amounts. Subsequent reports have substantiated this correlation (Bachmann and Price, 1977; Narayan, 1982). In various cereals, heterochromatin, which has been demonstrated to be correlated with the location of specific repeated DNA sequences, has been positively correlated with genome size (Bennett, Gustafson and Smith, 1977; Rayburn et al., 1985). Furuta, Nishikawa and Makino (1975) found significant DNA content variation among different accessions ofAegilops squarrosa L. This species contains the D genome, a pivotal genome in several polyploid species and also found in hexaploid wheat (AABBDD). The importance of this genome to the study of bread wheat genomes makes the mechanism(s) of this genomic plasticity of particular interest. In order to determine which sequences are varying, one must first have a way to identify specific types of chromatin and/or DNA. Specific types of chromosome banding such as C- and N-banding have been used to identity types of chromatin in previous studies. C-banding of the D genome results in very lightly staining bands whose pattern is somewhat indistinct. N-banding alternatively has been shown to be useful in identifying certain chromosomes of hexaploid wheat but is limited by the lack of major bands in the D genome (Endo and Gill, 1984). Specific DNA sequences have been isolated fromTriticum aestivum cultivar “Chinese Spring” (hexaploid wheat). However, these sequences are representatives of the A and/or B genomes of hexaploid wheat and are not found in significant quantities in the D genome (Hutchinson and Lonsdale, 1982). Various other repeated DNA sequences have been successfully isolated from rye (Bedbrook et al., 1980) and identified on rye chromosomes (Appels et al., 1981; Jones and Flavell, 1982). Certain of these sequences are found in wheat genomes, but the sequences are representative of only a minor fraction of the D genome (Bedbrook et al., 1980; Rayburn and Gill, 1985). The purpose of this report is to describe three distinct repeated DNA sequences isolated fromA. squarrosa (D genome). Two clones appear to be distributed throughout the total genome, and the third clone is restricted to specific sites along the chromosomes. This latter clone will prove useful in cytologically defining the D genome chromosomes. These sequences appear representative of two types of repeated DNA genome organization: 1) sequences distributed throughout the genome and 2) specific arrays of repeated sequences. The availability of such repeated DNA sequence clones along with the known intraspecific DNA content variation inA. squarrosa will allow the study of genomic plasticity of this species.  相似文献   

11.
Cloning and characterization of the cystic fibrosis transmembrane conductance regulator (CFTR) gene led to the identification and isolation of cDNA and genomic sequences that cross-hybridized to the first nucleotide binding fold of CFTR. DNA sequence analysis of these clones showed that the cross-hybridizing sequences corresponded to CFTR exon 9 and its flanking introns, juxtapositioned with two segments of LINE1 sequences. The CFTR sequence appeared to have been transcribed from the opposite direction of the gene, reversely transcribed, and co-integrated with the L1 sequences into a chromosome location distinct from that of the CFTR locus. Based on hybridization intensity and complexity of the restriction fragments, it was estimated that there were at least 10 copies of the “amplified” CFTR exon 9 sequences in the human genome. Furthermore, when DNA segments adjacent to the insertion site were used in genomic DNA blot hybridization analysis, multiple copies were also detected. The overall similarity between these CFTR exon 9-related sequences suggested that they were derived from a single retrotransposition event and subsequent sequence amplification. The amplification unit appeared to be greater than 30 kb. Physical mapping studies includingin situhybridization to human metaphase chromosomes showed that multiple copies of these amplified sequences (with and without the CFTR exon 9 insertion) were dispersed throughout the genome. These findings provide insight into the structure and evolution of the human genome.  相似文献   

12.
Origin and evolution of a major feline satellite DNA   总被引:7,自引:0,他引:7  
A major satellite DNA has been cloned from the domestic cat (Felis catus) and characterized. The satellite monomer, termed FA-SAT, is 483 base-pairs in size, 64% G + C, and represents about 1 to 2% of the cat genome. A consensus sequence based upon partial sequence data from 21 independently isolated clones demonstrates: (1) FA-SAT is not composed of a series of shorter repeats, although about 25 copies, primarily imperfect, of the hexanucleotide TAACCC appear in the sequence; (2) there are many more CpG dinucleotides present in FA-SAT than expected for a random sequence of its size; and (3) 61% of all base substitutions in FA-SAT involve the replacement of G and C residues by A and T residues, indicating that FA-SAT is rapidly becoming A + T-rich. FA-SAT-related sequences are found in many mammals, where they appear to be scattered throughout the genome and not tandemly arranged as in the cat. An FA-SAT-related sequence was cloned from the domestic dog genome and sequenced, and shown to contain multiple copies of the same TAACCC hexanucleotide found in the cat satellite.  相似文献   

13.
A novel retroviruslike family in mouse DNA.   总被引:6,自引:3,他引:3       下载免费PDF全文
In the course of structural analysis of VL30 DNA elements, a recombinant retroviruslike element was encountered that contained non-VL30 long terminal repeats (LTRs) flanking internal VL30 sequences. With the aid of this novel LTR sequence probe, we cloned several DNA elements that were apparently members of a new retroviruslike family. A particular DNA element representative of this family (designated GLN) was characterized. It was approximately 8 kilobase pairs long and contained LTRs that are 430 base pairs long. It possessed an unusual primer-binding site sequence that corresponds to tRNAGln and a polypurine tract primer that is adjacent to the 3' LTR. The nucleotide sequences of the LTRs and their adjacent regions (which together housed all cis-acting retroviral functions) were different from those of known retroviruses and retroviruslike families. The comparison of three different GLN LTR sequences revealed a marked heterogeneity of U3 sequences relative to the homogeneity of R and U5 sequences. We estimate that approximately 20 to 50 copies of GLN elements are dispersed in all species of mice. GLN-related LTRs, however, are present in a much higher copy number (1,000 to 1,500 per genome). Nucleotide sequences that are more distantly related to GLN DNA are present in multiple copies in DNAs of other rodents but not in nonrodent genomes.  相似文献   

14.
A complementary DNA clone of 7 SK RNA from HeLa cells was used to study the genomic organization of 7 SK sequences in the human genome. Genomic hybridizations and genomic clones show that 7 SK is homologous to a family of disperse repeated sequences most of which lack the 3' end of the 7 SK RNA sequence. Only few of the genomic K sequences are homologous to both 3' and 5' 7 SK probes and presumably include the gene(s) for 7 SK RNA. The sequence of four genomic 7 SK clones confirms that they are in most cases pseudogenes. Although Alu sequences are frequently found near the 3' and 5' end of K DNA, the sequences immediately flanking the pseudogenes are different in all clones studied. However, direct repeats were found flanking directly the K DNA or the K-Alu unit, suggesting that the K sequences alone or in conjunction with Alu DNA might constitute a mobile element.  相似文献   

15.
We have identified a family of small repeated sequences (from 60 to 66 bp in length) in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare). There are at least ten copies of these sequences and they are distributed throughout the mitochondrial genome. Each is potentially capable of forming a stem-and-loop structure and we have designated them PRSs (palindromic repeated sequences). Their features are reminiscent of the small dispersed repeats in the mitochondrial DNA (mtDNA) of some lower eukaryotes, such as Saccharomyces cerevisiae, Neurospora crassa and Chlamydomonas reinhardtii. Some of the PRSs of rice mtDNA are located in the intron of the gene for ribosomal protein S3 (rps3) and in the flanking sequence of the gene for chloroplast-like tRNAAsn (trnN). An analysis of PCR-amplified fragments of these regions from the DNA of some Gramineae suggests that the PRSs were inserted into these regions of the Oryza mtDNA after the divergence of Oryza from the other Gramineae.  相似文献   

16.
Eight recombinant phage clones containing cytoplasmic actin-like gene sequences have been isolated from a human genomic library for structural characterization. Kpn I family repeat sequences flank six of these actin genes isolated, and Alu family repeats are scattered throughout the DNA inserts of all eight phage clones. Three of these genes are γ actin-like, and the other five are β actin-like. The complete nucleotide sequence analysis of one β and one γ actin-like genes and their flanking regions demonstrates that they both are processed pseudogenes. Using unique DNA sequences flanking these two pseudogenes as hybridization probes for human-mouse somatic cell hybrid DNAs, we have mapped the two actin pseudogenes on human chromosomes 8 and 3, respectively. We have also determined the DNA sequence of a human Y chromosome-linked, processed actin pseudogene. The different values of sequence divergence of these processed pseudogenes and their functional counterparts allow us to estimate the time of generation of the pseudogenes. The results suggest that the cDNA insertion events generating the human cytoplasmic actin-like pseudogenes have occurred at significantly different times during the evolution of primates, after their separation from other mammalian species.  相似文献   

17.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

18.
Analysis of cloned human genomic loci homologous to the small nuclear RNA U1 established that such sequences are abundant and dispersed in the human genome and that only a fraction represent bona fide genes. The majority of genomic loci bear defective gene copies, or pseudogenes, which contain scattered base mismatches and in some cases lack the sequence corresponding to the 3' end of U1 RNA. Although all of the U1 genes examined to date are flanked by essentially identical sequences and therefore appear to comprise a single multigene family, we present evidence for the existence of at least three structurally distinct classes of U1 pseudogenes. Class I pseudogenes had considerable flanking sequence homology with the U1 gene family and were probably derived from it by a DNA-mediated event such as gene duplication. In contrast, the U1 sequence in class II and III U1 pseudogenes was flanked by single-copy genomic sequences completely unrelated to those flanking the U1 gene family; in addition, short direct repeats flanked the class III but not the class II pseudogenes. We therefore propose that both class II and III U1 pseudogenes were generated by an RNA-mediated mechanism involving the insertion of U1 sequence information into a new chromosomal locus. We also noted that two other types of repetitive DNA sequences in eucaryotes, the Alu family in vertebrates and the ribosomal DNA insertions in Drosophila, bore a striking structural resemblance to the classes of U1 pseudogenes described here and may have been created by an RNA-mediated insertion event.  相似文献   

19.
M J Leaver 《Gene》2001,271(2):203-214
Tc1-like transposons are very widely distributed within the genomes of animal species. They consist of an inverted repeat sequence flanking a transposase gene with homology to the mobile DNA element, Tc1 of the nematode Caenorhabditis elegans. These elements seem particularly to infest the genomes of fish and amphibian species where they can account for 1% of the total genome. However, all vertebrate Tc1-like elements isolated so far are non-functional in that they contain multiple frameshifts within their transposase coding regions. Here I describe a Tc1-like transposon (PPTN) from the genome of a marine flatfish species (Pleuronectes platessa) which bears conserved inverted repeats flanking an apparently intact transposase gene. Closely related, although degenerate, Tc1-like transposons were also isolated from the genomes of Atlantic salmon (SSTN, Salmo salar) and frog (RTTN, Rana temporaria). Consensual nucleic acid sequences were derived by comparing several individual isolates from each species and conceptual amino acid sequences were thence derived for their transposases. Phylogenetic analysis of these sequences with previously isolated Tc1-like transposases shows that the elements from plaice, salmon and frog comprise a new subfamily of Tc1-like transposons. Each member is distinct in that it is not found in the genomes of the other species tested. Plaice genomes contain about 300 copies of PPTN, salmon 1200 copies of SSTN and frog genomes about 500 copies of RTTN. The presence of these closely related elements in the genomes of fish and frog species, representing evolutionary lines, which diverged more than 400 million years ago, is not consistent with a vertical transmission model for their distributions.  相似文献   

20.
The majority of DNA that is found in most of the flowering plants appears to be non-coding DNA. Much of this excess DNA consists of nucleotide sequences which exist as multiple copies throughout the genome and are designated as repetitive sequences. Those sequences which are found in moderately high to high numbers of copies are observed to be of the greatest value as cytological markers. Moderately high copies may exist as sequences which are dispersed throughout the chromosomes of some species and not dispersed in other more distantly related species. By taking advantage of this characteristic and the technique of in situ hybridization with biotinylated probes, breakpoints of chromosomal translocations may be observed between species such as wheat and rye. Many of the high copy number repetitive sequences are organized in a tandem fashion in specific loci in the chromosome. Chromosomal identification may be accomplished by using the in situ hybridization technique. Upon in situ hybridization with a repetitive sequence isolated from Aegilops squarrosa, the patterns of the sites of hybridization allowed the D-genome chromosomes to be identified. The sequence was also observed only on the D-genome chromosomes of several polyploid species indicating its usefulness as a genome specific marker. Using this genome specificity, assessment of the orientation of the D-genome chromosomal segments of hexaploid wheat carrying the sequence during interphase and prophase of mitotic root tip cells was possible. Repetitive DNA sequences, therefore, provide cytological markers necessary for studies of chromosomal identification, genome allocation, and genome orientation. The use of biotin-labeled DNA probes allows the technique of in situ hybridization to be performed much more rapidly and with a greater degree of safety and reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号