首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous sequence analyses of the lycopene cyclase gene (crt Y) from Pantoea ananatis revealed that translation of its protein product in Escherichia coli began at the ATG start codon. We found, however, that this enzyme could also be produced in E. coli without the ATG start codon present. Results of experiments using crt Y mutants revealed that a GTG (Val) sequence, located in-frame and 24 bp downstream of the ATG, could act as a potential start codon. Additionally, a point-mutated GTA (Val), replaced from alternative GTG start codon, also displayed its potential as a start codon although the strength as a translation initiation codon was considerably weak. This finding suggests that non-ATG codons, especially one base pairing with the anticodon (3'-UAC-5') in fMet-tRNA, might be also able to function as start codon in translation process. Furthermore, amino acid sequence alignment of lycopene cyclases from different sources suggested that a Val residue located within the N-terminus of these enzymes might be used as an alternative translation initiation site. In particular, presence of a conserved Asp, located in-frame and 12 bp upstream of potential start codon, supports this assumption in view of the fact that Asp (GAT or GAC) can function as part of the Shine-Dalgano sequence (AGGAGG).  相似文献   

2.
3.
The lysP gene encodes the lysine-specific permease.   总被引:1,自引:0,他引:1       下载免费PDF全文
C Steffes  J Ellis  J Wu    B P Rosen 《Journal of bacteriology》1992,174(10):3242-3249
Escherichia coli transports lysine by two distinct systems, one of which is specific for lysine (LysP) and the other of which is inhibited by arginine ornithine. The activity of the lysine-specific system increases with growth in acidic medium, anaerobiosis, and high concentrations of lysine. It is inhibited by the lysine analog S-(beta-aminoethyl)-L-cysteine (thiosine). Thiosine-resistant (Tsr) mutants were isolated by using transpositional mutagenesis with TnphoA. A Tsr mutant expressing alkaline phosphatase activity in intact cells was found to lack lysine-specific transport. This lysP mutation was mapped to about 46.5 min on the E. coli chromosome. The lysP-phoA fusion was cloned and used as a probe to clone the wild-type lysP gene. The nucleotide sequence of the 2.7-kb BamHI fragment was determined. An open reading frame from nucleotides 522 to 1989 was observed. The translation product of this open reading frame is predicted to be a hydrophobic protein of 489 residues. The lysP gene product exhibits sequence similarity to a family of amino acid transport proteins found in both prokaryotes and eukaryotes, including the aromatic amino acid permease of E. coli (aroP) and the arginine permease of Saccharomyces cerevisiae (CAN1). Cells carrying a plasmid with the lysP gene exhibited a 10- to 20-fold increase in the rate of lysine uptake above wild-type levels. These results demonstrate that the lysP gene encodes the lysine-specific permease.  相似文献   

4.
5.
The PheP protein is a high-affinity phenylalanine-specific permease of the bacterium Escherichia coli. A topological model based on sequence analysis of the putative protein in which PheP has 12 transmembrane segments with both N and C termini located in the cytoplasm had been proposed (J. Pi, P. J. Wookey, and A. J. Pittard, J. Bacteriol. 173:3622-3629, 1991). This topological model of PheP has been further examined by generating protein fusions with alkaline phosphatase. Twenty-five sandwich fusion proteins have been constructed by inserting the 'phoA gene at specific sites within the pheP gene. In general, the PhoA activities of the fusions support a PheP topology model consisting of 12 transmembrane segments with the N and C termini in the cytoplasm. However, alterations to the model, affecting spans III and VI, were indicated by this analysis and were supported by additional site-directed mutagenesis of some of the residues involved.  相似文献   

6.
7.
Summary The Escherichia coli HU-2 gene was cloned using a DNA fragment from the HU-1 gene as a probe. The amino acid sequence of the HU-2 protein deduced from the nucleotide sequence is in good agreement with the published sequence. The nucleotide sequence has a possible promoter and a typical ribosomal binding site upstream of the translation initiation codon (AUG) and a possible rhoindependent terminater site downstream of the termination codon (UAA) of the gene.  相似文献   

8.
The phosphinothricin (Pt) N-acetyltransferase gene (pat) of Streptomyces viridochromogenes Tü494 is located on a 0.8-kb BglII fragment [Strauch et al., Gene 63 (1988) 65-74]. By sequencing a 1.3-kb BglII-SstII fragment, an open reading frame representing the pat gene was found. It encodes a polypeptide of 183 amino acids with an Mr of 20,621. The base composition of the pat gene is typical for Streptomyces [70.1 mol% (G + C) in total and 93.5 mol% (G + C) in the third position]. Translation of pat is initiated by a GTG codon which was identified by frameshift mutations in Escherichia coli as well as in Streptomyces lividans. Significant homology of the pat gene was found to the bialaphos-resistance gene (bar) of Streptomyces hygroscopicus [Thompson et al., EMBO J. 9 (1987) 2519-2523]. However, variations were detected in the 5'-noncoding region of the two resistance genes which may reflect differences in regulation. Since Pt is a potent herbicide, the pat gene was modified and introduced into Nicotiana tabacum by Agrobacterium-mediated leaf-disc transformation. The GTG start codon of pat was replaced by ATG. Subsequently the modified pat-coding region was fused to the 35S promoter of the cauliflower mosaic virus. Transgenic plants could directly be selected on Pt-containing medium.  相似文献   

9.
10.
Abstract

Site directed mutagenesis of the E. coli his gene with a double mismatch primer changed the initiation codon GTG to ATG and introduced an Ncol restriction site at the start codon. The promoter-deleted structural gene was cloned to the expression vector pKK 233–2.  相似文献   

11.
12.
13.
14.
This study demonstrates GTG as a novel, alternative initiation codon for translation of bovine endopin 2B-2, a serpin protease inhibitor. Molecular cDNA cloning revealed the endopin 2B-1 and endopin 2B-2 isoforms that are predicted to inhibit papain and elastase. Notably, GTG was demonstrated as the initiation codon for endopin 2B-2, whereas endopin 2B-1 possesses ATG as its initiation codon. GTG mediated in vitro translation of 46kDa endopin 2B-2. GTG also mediated translation of EGFP by in vitro translation and by expression in mammalian cells. Notably, mutagenesis of GTG to GTC resulted in the absence of EGFP expression in cells. GTG produced a lower level of protein expression compared to ATG. The use of GTG as an initiation codon to direct translation of endopin 2B, as well as the heterologous protein EGFP, demonstrates the role of GTG in the regulation of mRNA translation in mammalian cells. Significantly, further analyses of mammalian genomes based on GTG as an alternative initiation codon may predict new candidate gene products expressed by mammalian and human genomes.  相似文献   

15.
16.
17.
18.
A translational frameshift is necessary in the synthesis of Escherichia coli release factor 2 (RF-2) to bypass an in-frame termination codon within the coding sequence. High-efficiency frameshifting around this codon can occur on eukaryotic ribosomes as well as prokaryotic ribosomes. This was determined from the relative efficiency of translation of RF-2 RNA compared with that for the other release factor RF-1, which lacks the in-frame premature stop codon. Since the termination product is unstable an absolute measure of the efficiency of frameshifting has not been possible. A gene fusion between trpE and RF-2 was carried out to give a stable termination product as well as the frameshift product, thereby allowing a direct determination of frameshifting efficiency. The extension of RF-2 RNA near its start codon with a fragment of the trpE gene, while still allowing high efficiency frameshifting on prokaryotic ribosomes, surprisingly gives a different estimate of frameshifting on the eukaryotic ribosomes than that obtained with RF-2 RNA alone. This paradox may be explained by long distance context effects on translation rates in the frameshift region created by the trpE sequences in the gene fusion, and may reflect that pausing and translation rate are fundamental factors in determining the efficiency of frameshifting.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号