首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some controversy exists in the literature as to whether or not diaphragmatic glycogen is utilized during exercise. In this study male Sprague-Dawley rats were used to determine whether prolonged treadmill exercise would result in a significant reduction of glycogen concentration in the respiratory muscles. Untrained rats were run to exhaustion at a speed of 24 m/min, up a 10% grade. Run time averaged 48:30 min. After exercise a significant reduction in glycogen was observed in the diaphragm (43% of control), intercostals (43%), heart (39%), and plantaris (76%). In the diaphragm a significant reduction was shown in both types I and II fibers using the periodic acid-Schiff (PAS) stain for glycogen. These findings show that muscles with vastly different aerobic capacities utilize endogenous glycogen during moderately intense submaximal endurance exercise and that the costal diaphragm muscle is not an exception as has recently been suggested.  相似文献   

2.
1. Eel were exposed to a sublethal concentration of lindane (0.335 ppm) for 6, 12, 24, 48, 72 and 96 hr. 2. Concentrations of glycogen, glucose, lactate, pyruvate and lipids were determined in gill tissue after lindane exposure. 3. Gill glycogen decreased and glucose levels increased at 6 hr of treatment, lactate and pyruvate concentration increased between 6 and 48 hr. Total lipid values decreased between 6 and 24 hr; thereafter, the levels increased up to 72 hr of exposure. 4. Clear changes were found in all parameters tested in gill tissues. The observed effects of lindane on metabolism in fish are discussed in relation to acute stress syndrome.  相似文献   

3.
  • 1.1. Eel were exposed to a sublethal concentration of lindane (0.335 ppm) for 6, 12, 24, 48, 72 and 96 hr.
  • 2.2. Concentrations of glycogen, glucose, lactate, pyruvate and lipids were determined in gill tissue after lindane exposure.
  • 3.3. Gill glycogen descreased and glucose levels increased at 6 hr of treatment, lactate and pyruvate concentration increased between 6 and 48 hr. Total lipid values decreased between 6 and 24 hr; thereafter, the levels increased up to 72 hr of exposure.
  • 4.4. Clear changes were found in all parameters tested in gill tissues. The observed effects of lindane on metabolism in fish are discussed in relation to acute stress syndrome.
  相似文献   

4.
Glycogen concentration in the adult rat diaphragm and intercostal muscles has been examined following heavy treadmill exercise to determine the recruitment strategy and the significance of glycogen as a substrate to satisfy the elevated energy requirements accompanying hyperpnea. Short-term continuous running at 60 m/min and a 12 degree grade resulted in a reduction (p less than 0.05) in the concentration of glycogen (39%) in the costal region of the rat diaphragm. Similarly, glycogen concentration was significantly reduced (p less than 0.05) with this exercise protocol in all respiratory muscles studied, with the exception of the sternal region of the diaphragm. With the less intense running protocols, glycogen degradation continued to be pronounced (p less than 0.05) in the majority of the respiratory muscles sampled. The significance of muscle glycogen as a substrate for energy metabolism in the respiratory muscles was not affected by the procedure used to prepare the animal for tissue sampling (Somnitol, diethyl ether, decapitation). Examination of selected locomotor muscles revealed extensive glycogen loss in muscles composed of essentially slow oxidative fibres (soleus), fast oxidative glycolytic fibres (vastus lateralis red), and fast glycolytic fibres (vastus lateralis white). It is concluded that during heavy exercise in the rat, recruitment of motor units occurs in all regions of the diaphragm and in the intercostal muscles. At least for the costal region of the diaphragm and as evidenced by the modest (two- to four-fold) but significant (p less than 0.05) increases in lactate concentration, the increased ATP requirements in these muscles are met to a large degree by increases in aerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

6.
The purpose of this experiment was to examine glycogen depletion in muscles of chronic diabetic rats during treadmill running of moderate intensity and glycogen repletion following the exercise bouts. Diabetes was induced with a single intravenous injection of streptozotocin (70 mg × kg?1). Glycogen concentrations in muscles from diabetic and normal animals were determined at rest, after running either 10 or 30 min at 23 m × min?1 (5% incline), or 2, 4, or 8 hr following 30 min of running at the same speed and incline. With the exception of soleus muscle after 30 min of running, there were no differences in muscle glycogen contents between normal and diabetic rats before exercise, immediately after exercise, or during the recovery period. All muscles showed a significant loss of glycogen during exercise, and most muscles had completely restored their glycogen by 2 hr following exercise. Blood lactate concentrations were also similar for normal and diabetic rats at rest and after exercise. It is concluded that the diabetic condition studied in this experiment did not significantly alter muscle glycogen metabolism during exercise of moderate intensity or during recovery from the activity.  相似文献   

7.
Comparison of rat heart preservation by simple storage in a cardioplegic solution at 4 degrees C (6 hr for group I; 15 hr for group II) and by hypothermic low-flow perfusion of the same solution (0.3 ml min-1, 15 hr: group III) was performed by measuring biochemical and functional parameters and by collecting 31P-NMR spectroscopy data. When compared to control values, adenine nucleotide levels remained unchanged in group I hearts, while glycogen was 45% hydrolyzed and lactate level increased by 700%. Extension of heart immersion to 15 hr (group II) led to breakdown of ATP (-77%), of the sum of adenine nucleotides (-27%), and of glycogen (-77%), whereas lactate accumulation reached 900% of the control value. Functional recovery, measured at the end of a 60-min reperfusion was less than 10% in group II hearts when compared to group I hearts. This dramatic development was completely avoided by hypothermic low-flow perfusion (group III). 31P-NMR data showed that phosphocreatine was completely degraded in all groups of preserved hearts. Low-flow perfusion limited cellular acidosis. The ATP/Pi (Pi = inorganic phosphate) ratio calculated from NMR data was lower for group II hearts (0.04 +/- 0.01, n = 6) than for group I hearts (0.29 +/- 0.12; n = 6) or group III hearts (0.19 +/- 0.09; n = 6) and could constitute a convenient bioenergetic index to predict the capability of the heart to recover satisfactory contractility following a preservation period.  相似文献   

8.
Specimens of the stone crab, Menippe mercenaria, survived severe hypoxia (PO2 less than 8mm Hg) for at least 12 hr at 28-30 degrees C. During the time course of 12 hr of hypoxia, hemolymph L-lactate levels rose to 30-50 mumoles/g wet wt. There was a slight elevation of L-alanine levels, whereas succinate was found in only trace quantities in the hemolymph. Pronounced metabolic changes took place in the heart, cheliped closer, and leg socket muscles during severe hypoxia. L-lactate accumulated to levels ranging from 16-20 mumoles/g wet wt. There were pronounced changes in high-energy phosphate levels in the cheliped closer and leg socket muscles. Taking into account expected intra- and extracellular water content, the calculated intracellular lactate content in the three muscles investigated is substantially less than the hemolymph lactate concentrations. Part of this reverse concentration gradient may be accounted for by the reduction in lactate activity due to cation-lactate complex formation. Hemolymph calcium and magnesium concentrations rose considerably during severe hypoxia. During recovery from severe hypoxia, approximately 50% of the accumulated lactate in the hemolymph was cleared in 6 hr. Hemolymph lactate and alanine levels returned to near control levels after 24 hr of recovery. This study shows that the stone crab, M. mercenaria, survives severe hypoxia by a reliance on glycogen fermentation to lactate. This species is capable of tolerating high levels of accumulated lactate.  相似文献   

9.
The objective of this study was to evaluate the effects of a diet supplemented with branched-chain amino acids (BCAA; 3.57% and 4.76%) on the performance and glycogen metabolism of trained rats. Thirty-six adult male Wistar rats received the control diet (AIN-93M) (n=12) and two diets supplemented with BCAA (S1: AIN-93M+3.57% BCAA, n=12, and S2: AIN-93M+4.76% BCAA, n=12) for 6 weeks. The training protocol consisted of bouts of swimming exercise (60 min day(-1)) for 6 weeks at intensities close to the lactate threshold. On the last day of the experiment, all groups were trained for 1 h (1H) or were submitted to the exhaustion test (EX). The time to exhaustion did not differ between groups. The groups submitted to the exhaustion test presented a reduction in plasma glucose and an increase in plasma ammonia and blood lactate concentrations compared to the 1H condition. In the 1H condition, hepatic glycogen concentration was significantly higher in group S2 compared to the control diet and S1 groups (132% and 44%, respectively). Group S2 in the 1H condition presented a higher muscle glycogen concentration (45%) compared to the control diet group. In the EX condition, a significantly higher hepatic glycogen concentration was observed for group S2 compared to the control diet and S1 groups (262% and 222%, respectively). Chronic supplementation with BCAA promoted a higher hepatic and muscle glycogen concentration in trained animals, with this effect being dose dependent.  相似文献   

10.
Metabolite changes in the costal diaphragm were determined in anesthetized dogs subjected to a moderate inspiratory elastic load and to reduced blood flow. Diaphragmatic blood flow was reduced by occlusion of the descending aorta and internal mammary arteries. The goal of this study was to demonstrate that the failing diaphragm under these conditions shows biochemical changes similar to that of skeletal muscle fatigue. Selected metabolite concentrations were determined 1) during mechanical ventilation and normal blood flow, 2) during blood flow reduction and inspiratory loading when the ratio of airway pressure to diaphragmatic electromyogram (Paw/Edi) had decreased by 50% (fatigue), and 3) at 1 h after restoration of blood flow and mechanical ventilation (recovery). During fatigue, glycogen, ATP, and phosphocreatine were 30, 50, and 50% of control levels, respectively. Glucose 6-phosphate and lactate were two- and fivefold higher, respectively, than control concentrations. During recovery, all metabolites, except ATP and lactate, returned to control concentrations. These changes were not seen in resting ischemic skeletal muscles or in the diaphragmatic samples of the mechanically ventilated animals with diaphragmatic blood flow limitation. We conclude that when the loaded and hypoperfused diaphragm fails, as indicated by lower than control Paw/Edi, metabolite changes similar to that observed in fatigued skeletal muscle occur.  相似文献   

11.
The distribution and redox state of ubiquinone in rat and human tissues have been investigated. A rapid extraction procedure and direct injection onto HPLC were employed. It was found in model experiments that in postmortem tissue neither oxidation nor reduction of ubiquinone occurs. In rat the highest concentrations of ubiquinone-9 were found in the heart, kidney, and liver (130-200 micrograms/g). In brain, spleen, and intestine one-third and in other tissues 10-20% of the total ubiquinone contained 10 isoprene units. In human tissues ubiquinone-10 was also present at highest concentrations in heart, kidney, and liver (60-110 micrograms/g), and in all tissues 2-5% of the total ubiquinone contained 9 isoprene units. High levels of reduction, 70-100%, could be observed in human tissues, with the exception of brain and lung. The extent of reduction displayed a similar pattern in rat, but was generally lower.  相似文献   

12.
Renal metabolism has been studied in eight dogs before and 48 hr after a 60-min period of renal ischemia induced by clamping the left renal artery with the simultaneous removal of the right kidney, and in 12 sham-operated animals. The study involved the measurement of renal uptake and production of lactate, glutamine, glutamate, alanine, ammonium, and oxygen, and the measurement of the tissue concentrations of ATP, glutamine, lactate, alpha-ketoglutarate, aspartate, and alanine in the renal cortex. Two days after a temporary renal ischemia, the remaining kidney showed a 22% decrease in glomerular filtration rate (GFR) and a 25% decrease in renal plasma flow. Fractional sodium and potassium excretions were similar to those of control dogs. Renal production or extraction of glutamine, glutamate, alanine, ammonium, and oxygen (all expressed by 100 ml of GFR) was not significantly different in basal conditions or 2 days after ischemia, but lactate extraction was reduced in postischemic kidneys (-101 +/- 29 vs -204 +/- 38 mumol/100 ml GFR in control dogs). The cortical concentrations of glutamine and glutamate were lower in postischemic than in control kidneys. No differences were found in cortical concentration of alpha-ketoglutarate, aspartate, lactate, pyruvate, or ATP, but total nucleotides and inorganic phosphate were decreased in postischemic kidneys. It is concluded that in the recovery phase of the ischemia, a decreased lactate uptake is the main metabolic change, and total ATP production is adapted to the decrease of GFR and sodium reabsorption.  相似文献   

13.
1. A fungal glucamylase (alpha-1,4-glucan glucohydrolase, EC 3.2.1.3) from Aspergillus niger depresses liver glycogen stores after intraperitoneal injection into the rat. The injected enzyme rapidly disappears (within about 8hr.) from the serum; less than 1% is excreted in the urine, but it is rapidly taken up in the liver, spleen, kidney, cardiac and skeletal muscle. Elevated glucamylase concentrations could be demonstrated in liver and spleen tissues for 1-4 days after injection, but in kidney, cardiac and skeletal muscle elevated glucamylase concentrations could be shown only for periods of less than 24hr. after injection of the enzyme.  相似文献   

14.
1. Glycogen, glucose, lactate and glycogen phosphorylase concentrations and the activities of glycogen phosphorylase a and acid 1,4-alpha-glucosidase were measured at various times up to 120 min after death in the liver and skeletal muscle of Wistar and gsd/gsd (phosphorylase b kinase deficient) rats and Wistar rats treated with the acid alpha-glucosidase inhibitor acarbose. 2. In all tissues glycogen was degraded rapidly and was accompanied by an increase in tissue glucose and lactate concentrations and a lowering of tissue pH. In the liver of Wistar and acarbose-treated Wistar rats and in the skeletal muscle of all rats glycogen loss proceeded initially very rapidly before slowing. In the gsd/gsd rat liver glycogenolysis proceeded at a linear rate throughout the incubation period. Over 120 min 60, 20 and 50% of the hepatic glycogen store was degraded in the livers of Wistar, gsd/gsd and acarbose-treated Wistar rats, respectively. All 3 types of rat degraded skeletal muscle glycogen at the same rate and to the same extent (82% degraded over 2 hr). 3. In Wistar rat liver and skeletal muscle glycogen phosphorylase was activated soon after death and the activity of phosphorylase a remained well above the zero-time level at all later time points, even when the rate of glycogenolysis had slowed significantly. Liver and skeletal muscle acid alpha-glucosidase activities were unchanged after death. 4. The decreased rate and extent of hepatic glycogenolysis in both the gsd/gsd and acarbose-treated rats suggests that this process is a combination of phosphorolysis and hydrolysis. 5. Glycogen was purified from Wistar liver and skeletal muscle at various times post mortem and its structure investigated. Fine structural analysis revealed progressive shortening of the outer chains of the glycogen from both tissues, indicative of random, lysosomal hydrolysis. Analysis of molecular weight distributions showed inhomogeneity in the glycogen loss; in both tissues high molecular weight glycogen was preferentially degraded. This material is concentrated in lysosomes of both skeletal muscle and liver. These results are consistent with a role for lysosomal hydrolysis in glycogen degradation.  相似文献   

15.
The effects on newly-hatched turkey poults of feeding diets with varying levels of carbohydrate and of oral gavage with suspensions of corn starch were studied. Feeding lowered hepatic glucose-6-phosphatase activity and raised blood glucose and hepatic glycogen concentrations. In Nicholas strain turkeys, increases of dietary levels of carbohydrate enhanced hepatic glycogen stores without affecting blood glucose concentration or glucose-6-phosphatase activity. Oral gavage of poults with suspensions of corn starch in water raised blood glucose and hepatic glycogen concentrations and lowered glucose-6-phosphatase activity in dose- and time-dependent manners. Changes were noted at 1 hr post-gavage. Oral gavage with starch lowered lactate concentrations in muscle and plasma and lowered plasma concentrations of β-hydroxybutyrate and urate. Plasma concentrations of pyruvate appeared to decline with post-hatch holding without feed. Thus, the apparent effect of starch gavage on plasma pyruvate (high concentration) is dependent upon the length of the holding period for the controls. The data show that poults can alter their metabolism (decrease lipid oxidation and gluconeogenesis and increase carbohydrate stores) almost immediately (1 hr) after oral administration of carbohydrate.  相似文献   

16.
Pregnant rats were treated on day 11 of pregnancy with 0.62, 1.25, 2.5 or 5.0 mg of isoxazole per 100 g of body weight (bw) (Experiment I) or with 2.5 mg of isoxazole per 100 g of bw (Experiment II). In Experiment I animals were anaesthetized with pentobarbital at 48 hr. In experiment II animals were similarly anaesthetized at 0, 12, 24, or 48 hr following administration of isoxazole. Blood was collected separately from the ovary or from the uterus via a thin cannula which was inserted into the utero-ovarian vein. Blood was also collected from the vena cava inferior. The concentrations of progesterone (P), 17 beta-oestradiol (E2), and corticosterone were measured in blood samples by RIA. All of the animals exhibited reduced rates of ovarian venous blood flow and rates of P secretion when pregnancy was terminated by isoxazole (2.5 mg/100 g bw or greater). The concentration of P was found to be correspondingly reduced by 90% in ovarian venous blood and by 50% in peripheral blood, relative to the controls. After isoxazole had been administered, the rate of P secretion and also the concentration of P in peripheral blood continued to decrease rapidly and to remain at low levels for at least 48 hr. By contrast, the concentration of corticosterone in peripheral blood decreased during the first 12 hr but then it returned to the control levels by 48 hr. The ovarian secretion rate of E2 and the concentration of E2 in peripheral blood remained unchanged during the same 48 hr period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
31P NMR spectroscopy was used to evaluate interspecies differences in muscle fibre types and related postmortem metabolism. M. longissimus thoracis (MLT) and m. pectoralis superficialis (MPS) of bulls and MLT of pigs were investigated. In perchloric acid extracts NMR resonances for sugar phosphates (SP), inorganic phosphate (Pi), glycerophosphorylcholine (GPC), phosphocreatine (PCr), adenosine triposphate (ATP), adenosine diphosphate (ADP) as well as for NAD+/NADH could be distinguished. Also, glycogen and lactate contents and pH were determined. The relative contents of phosphorus compounds in bovine muscles of similar participation of muscle fibre are similar. Bovine muscles contain a relatively large proportion of PCr (48% of all phosphates 15 minutes post-mortem in MPS) whereas porcine MLT show lower PCr content (11% 15 minutes post-mortem). On the other hand, the ATP content is relatively higher in porcine MLT when compared with bovine muscles in the early phases of the postmortem processes. No NMR-detectable levels of GPC were measured in porcine MLT in contrast to bovine muscles. This suggests that the GPC content does not depend solely on the fibre participation but is also animal species determined. The 24 hour postmortem metabolism patterns of bovine and porcine muscles have many common traits. CP disappeared first followed by ATP. Simultaneously, the Pi concentrations increased. However, the content of SP remained relatively constant in porcine, but not in bovine muscles where it increased only gradually. The significantly higher concentrations of SP and lactate as well as the lower values of glycogen and pH measured for porcine as compared with bovine muscles suggest an enhanced glycolysis during the early phases of postmortem processes in porcine muscles.  相似文献   

18.
The aim of the present study was to examine effect of prolonged fasting on muscle glycogen and triglyceride concentration as well as on non-protein nitrogen excretion with urine in late pregnant rats. They were divided into four groups: I--fed, pregnant for 21 days, II--fasted for one day (from 20 to 21 day of pregnancy), III--fasted for two days (from 19 to 21 day) and IV--fasted for three days (from 18 to 21 day). The concentration of glycogen and triglycerides was determined in the following tissues: the white and red layers of the vastus lateralis, the soleus, the diaphragm, the heart and the liver. The urine was collected in each group 24 h (from 20 to 21 day). It has been found that concentration of glycogen in the leg muscles is reduced by about 50% and in the diaphragm by 75% already after 24 h fasting and then remains stable. The concentration of glycogen in the heart increases after one day of fasting and then returns to the control value. The effect of fasting on the concentration of triglycerides in the tissues depends on a tissue studied. It decreases gradually in the white vastus, and in the soleus only on the third day. It is elevated during the first two days of fasting in the red vastus, diaphragm and liver and returns to the control level on the third day. The fasting doubled the concentration of triglycerides in the heart. The urinary urea, creatinine, and uric acid excretion decreases and ammonia excretion increases during fasting. The results obtained indicate that the late gestation does not alter response of muscle glycogen metabolism to fasting as compared to the male rats. It does effect metabolism of triglycerides.  相似文献   

19.
Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1-3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.  相似文献   

20.
Summary Lactate removal and glycogen replenishment were studied in the lizardSceloporus occidentalis following exhaustion at 35°C. Whole body lactate concentrations and oxygen consumption were measured inSceloporus at rest, after 2 min vigorous exercise and at intervals during a 150 min recovery period. Lactate concentrations peaked at 2.2 mg/g (24 mM) after exercise and returned to resting levels after 90 min. Oxygen consumption returned to resting rates after 66 min. In a second set of experiments, glycogen and lactate concentrations of liver, hindlimb and trunk musculature were measured over the same time periods of exercise and recovery. The decrease in muscle glycogen following exercise was identical (mg/g) to the increase in muscle lactate, and the stoichiometric and temporal relationships between lactate removal and glycogen replenishment during the recovery period were also similar. Glycogen replenishment was rapid (within 150 min) and complete in fastedSceloporus. Dietary supplement of carbohydrate during 48 h of recovery led to supercompensation of glycogen stores in the muscle (+66%) and liver (+800%). The changes were similar to the seasonal differences measured inSceloporus from the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号