首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
能利用五碳糖和六碳糖生产乙醇的基因工程菌菌株的构建   总被引:5,自引:0,他引:5  
燃料乙醇是一种极具前景的燃油代用品,近年来发展尤为迅速,为了推广这种能源和满足日益增长的需求,我们有必要开发更为高效的生产工艺和寻找更为廉价的原料。解决此问题的关键在于获得高效的工程菌,使其能利用木质纤维素水解液中的五碳糖和六碳糖发酵生产乙醇。通过代谢工程的研究和基因重组技术,几种重组细菌显示出良好的开发前景,它们是运动发酵单胞菌、大肠杆菌、产酸克雷伯氏菌和菊欧文氏菌。本文就这四种细菌的研究进展以及基因重组过程进行了介绍和评价。  相似文献   

2.
With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper substrate such as lignocellulose could make bioethanol more competitive with fossil fuel. The processing and utilization of this substrate is complex, differing in many aspects from crop-based ethanol production. One important requirement is an efficient microorganism able to ferment a variety of sugars (pentoses, and hexoses) as well as to tolerate stress conditions. Through metabolic engineering, bacterial and yeast strains have been constructed which feature traits that are advantageous for ethanol production using lignocellulose sugars. After several rounds of modification/evaluation/modification, three main microbial platforms, Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli, have emerged and they have performed well in pilot studies. While there are ongoing efforts to further enhance their properties, improvement of the fermentation process is just one of several factors-that needs to be fully optimized and integrated to generate a competitive lignocellulose ethanol plant.  相似文献   

3.
Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.  相似文献   

4.
Use of agricultural biomass, other than corn-starch, to produce fuel ethanol requires a microorganism that can ferment the mixture of sugars derived from hemicellulose. Escherichia coli metabolizes a wide range of substrates and has been engineered to produce ethanol in high yield from sugar mixtures. E. coli metabolizes glucose in preference to other sugars and, as a result, utilization of the pentoses in hemicellulose-derived sugar mixtures is delayed and may be incomplete. Residual sugar lowers the ethanol yield and is problematic for downstream processing of fermentation products. Therefore, a catabolite repression mutant that simultaneously utilizes glucose and pentoses would be useful for fermentation of complex substrate mixtures. We constructed ethanologenic E. coli strains with a glucose phosphotransferase (ptsG) mutation and used the mutants to ferment glucose, arabinose, and xylose, singly and in mixtures, to ethanol. Yields were 87-94% of theoretical for both the wild type and mutants, but the mutants had an altered pattern of mixed sugar utilization. Phosphotransferase mutants metabolized the pentoses simultaneously with glucose, rather than sequentially. Based upon fermentations of sugar mixtures, a catabolite-repression mutant of ethanologenic E. coli is expected to provide more efficient fermentation of hemicellulose hydrolysates by allowing direct utilization of pentoses.  相似文献   

5.
The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals.  相似文献   

6.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

7.
Bacteria engineered for fuel ethanol production: current status   总被引:46,自引:4,他引:42  
The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing microorganisms capable of fermenting sugars not fermentable by brewers' yeast. The most significant of these is xylose. The greatest successes have been in the engineering of Gram-negative bacteria: Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis. E. coli and K. oxytoca are naturally able to use a wide spectrum of sugars, and work has concentrated on engineering these strains to selectively produce ethanol. Z. mobilis produces ethanol at high yields, but ferments only glucose and fructose. Work on this organism has concentrated on introducing pathways for the fermentation of arabinose and xylose. The history of constructing these strains and current progress in refining them are detailed in this review.  相似文献   

8.
While interest in bioethanol production from lignocellulosic feedstocks is increasing, there is still relatively little pilot-plant data and operating experience available for this emerging industry. A series of batch and continuous fermentation runs were performed in a pilot-plant, some lasting up to six weeks, in which corn fiber-derived sugars were fermented to ethanol using glucose-fermenting and recombinant glucose/xylose-fermenting yeasts. However, contamination by Lactobacillus bacteria was a common occurrence during these runs. These contaminating microorganisms were found to readily consume arabinose, a sugar not utilized by the yeast, producing acetic and lactic acids that had a detrimental effect on fermentation performance. The infections were ultimately controlled with the antibiotic virginiamycin, but routine use of antibiotics is cost prohibitive. The severity of the problem encountered during this work is probably due to use of a highly contaminated feedstock. Lignocellulosic conversion facilities will not employ aseptic designs. Instead, techniques similar to those employed in the corn-based fuel ethanol industry to control infections will be used. Effective control may also be possible by using fermentative microorganisms that consume all biomass-derived sugars.  相似文献   

9.
产乙醇工程菌研究进展   总被引:1,自引:1,他引:1  
王凡强  许平 《微生物学报》2006,46(4):673-675
伴随着21世纪的到来,低油价的时代也悄然落幕。简要概述了燃料乙醇产生菌代谢工程的研究进展,包括了利用淀粉、戊糖及纤维素的工程酵母构建,运动发酵单胞菌利用戊糖工程菌的构建,引入外源乙醇合成途径的大肠埃希氏菌和产酸克雷伯氏菌等。对燃料乙醇的重视将促进开发能利用廉价原料和要求粗放的工程菌株用于高产乙醇的生产过程,以降低成本和能耗,其中能利用生淀粉的工程酵母及利用木质纤维素水解物的运动发酵单胞菌工程菌有较大的工业化潜力。  相似文献   

10.
Ethanol fuel can be produced renewably from numerous plant and waste materials, but harnessing the energy of lignocellulosic feedstocks has been particularly challenging in the development of this alternative fuel as a substitute for petroleum-based fuels. Consolidated bioprocessing has the potential to make the conversion of biomass to fuel an economical process by combining enzyme production, polysaccharide hydrolysis, and sugar fermentation into a single unit operation. This consolidation of steps takes advantage of the synergistic nature of enzyme systems but requires the use of one or a few organisms capable of producing highly efficient cellulolytic enzymes and fermenting most of the resulting sugars to ethanol with minimal byproduct formation while tolerating high levels of ethanol. In this review, conventional ethanol production, consolidated bioprocessing, and simultaneous saccharification and fermentation are described and compared. Several wild-type and genetically engineered microorganisms, including strains of Clostridium thermocellum, Saccharomyces cerevisiae, Klebsiella oxytoca, Escherichia coli, Flammulina velutipes, and Zymomonas mobilis, among others, are highlighted for their potential in consolidated bioprocessing. This review examines the favorable and undesirable qualities of these microorganisms and their enzyme systems, process engineering considerations for particular organisms, characteristics of cellulosomes, enzyme engineering strategies, progress in commercial development, and the impact of these topics on current and future research.  相似文献   

11.
微生物木糖发酵产乙醇的代谢工程   总被引:1,自引:0,他引:1  
张颖  马瑞强  洪浩舟  张维  陈明  陆伟 《生物工程学报》2010,26(10):1436-1443
利用木质纤维素发酵生产乙醇具有广泛的应用前景。而自然界中缺少有效转化木糖为乙醇的微生物是充分利用纤维素水解产物、提高乙醇产率、降低生产成本的关键因素。多年来研究者利用分子生物学技术对微生物菌株进行了代谢工程改造,使其能更有效地利用木糖生产乙醇。以下主要对运动发酵单胞菌、大肠杆菌和酵母等候选产乙醇微生物的木糖代谢工程研究进展进行了概述。  相似文献   

12.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

13.
Summary Fermentation of an enzymatic hydrolyzate of ammonia fiber explosion (AFEX) pretreated corn fiber (containing a mixture of different sugars including glucose, xylose, arabinose, and galactose) by genetically-engineered Escherichia coli strain SL40 and KO11 and Klebsiella oxytoca strain P2 was investigated under pH-controlled conditions. Both E. coli strains (SL40 and KO11) efficiently utilized most of the sugars contained in the hydrolyzate and produced a maximum of 26.6 and 27.1 g/l ethanol, respectively, equivalent to 90 and 92% of the theoretical yield. Very little difference was observed in cell growth and ethanol production between fermentations of the enzymatic hydrolyzate and mixtures of pure sugars, simulating the hydrolyzate. These results confirm the fermentability of the AFEX-treated corn fiber hydrolyzate by ethanologenic E. coli. K.oxytoca strain P2, on the other hand, showed comparatively poor growth and ethanol production (maximum 20 g/l) from both enzymatic hydrolyzate and simulated sugar mixtures under the same fermentation conditions.  相似文献   

14.
Conversion of lignocellulosic feedstocks to ethanol requires microorganisms that effectively ferment both hexose and pentose sugars. Towards this goal, recombinant organisms have been developed in which heterologous genes were added to platform organisms such as Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli. Using a novel approach that relies only on native enzymes, we have developed a homoethanologenic alternative, Escherichia coli strain SE2378. This mutant ferments glucose or xylose to ethanol with a yield of 82% under anaerobic conditions. An essential mutation in this mutant was mapped within the pdh operon (pdhR aceEF lpd), which encodes components of the pyruvate dehydrogenase complex. Anaerobic ethanol production by this mutant is apparently the result of a novel pathway that combines the activities of pyruvate dehydrogenase (typically active during aerobic, oxidative metabolism) with the fermentative alcohol dehydrogenase.  相似文献   

15.
Present work deals with the biotechnological production of fuel ethanol from different raw materials. The different technologies for producing fuel ethanol from sucrose-containing feedstocks (mainly sugar cane), starchy materials and lignocellulosic biomass are described along with the major research trends for improving them. The complexity of the biomass processing is recognized through the analysis of the different stages involved in the conversion of lignocellulosic complex into fermentable sugars. The features of fermentation processes for the three groups of studied feedstocks are discussed. Comparative indexes for the three major types of feedstocks for fuel ethanol production are presented. Finally, some concluding considerations on current research and future tendencies in the production of fuel ethanol regarding the pretreatment and biological conversion of the feedstocks are presented.  相似文献   

16.
External nutrient supplementation and detoxification of hydrolysate significantly increase the production cost of cellulosic ethanol. In this study, we investigated the feasibility of fermenting cellulosic hydrolysates without washing, detoxification or external nutrient supplementation using ethanologens Escherichia coli KO11 and the adapted strain ML01 at low initial cell density (16 mg dry weight/L). The cellulosic hydrolysates were derived from enzymatically digested ammonia fiber expansion (AFEX)-treated corn stover and dry distiller's grain and solubles (DDGS) at high solids loading (18% by weight). The adaptation was achieved through selective evolution of KO11 on hydrolysate from AFEX-treated corn stover. All cellulosic hydrolysates tested (36-52 g/L glucose) were fermentable. Regardless of strains, metabolic ethanol yields were near the theoretical limit (0.51 g ethanol/g consumed sugar). Volumetric ethanol productivity of 1.2 g/h/L was achieved in fermentation on DDGS hydrolysate and DDGS improved the fermentability of hydrolysate from corn stover. However, enzymatic hydrolysis and xylose utilization during fermentation were the bottlenecks for ethanol production from corn stover at these experimental conditions. In conclusion, fermentation under the baseline conditions was feasible. Utilization of nutrient-rich feedstocks such as DDGS in fermentation can replace expensive media supplementation.  相似文献   

17.
Fuel ethanol production from lignocellulosic materials is at a level where commercial biofuel production is becoming a reality. The solubilization of the hemicellulose fraction in lignocellulosic-based feedstocks results in a large variety of sugar mixtures including xylose. However, allowing xylose fermentation in yeast that normally is used for fuel ethanol production requires genetic engineering. Moreover, the efficiency of lignocellulosic pretreatment, together with the release and generation of inhibitory compounds in this step, are some of the new challenges faced during second generation ethanol production. Successful advances in all these aspects will improve ethanol yield, productivity and titer, which will reduce the impact on capital and operating costs, leading to the consolidation of the fermentation of lignocellulosic biomass as an economically feasible option for the production of renewable fuels. Therefore the development of yeast strains capable of fermenting a wide variety of sugars in a highly inhibitory environment, while maintaining a high ethanol yield and production rate, is required. This review provides an overview of the current status in the use of xylose-engineered yeast strains and describes the remaining challenges to achieve an efficient deployment of lignocellulosic-based ethanol production.  相似文献   

18.
酿酒酵母木糖发酵酒精途径工程的研究进展   总被引:17,自引:1,他引:16  
途径工程(Pathway engineering),被称为第三代基因工程,改变代谢流向,开辟新的代谢途径是途径工程的主要目的。利用途径工程理念,对酿酒酵母(Saccharomyces cerevisiae)代谢途径进行理性设计,以拓展这一传统酒精生产菌的底物范围,使其充分利用可再生纤维质水解物中的各种糖分,是酿酒酵母酒精途径工程的研究热点之一。这里介绍了近年来酿酒酵母以木糖为底物的酒精途径工程的研究进展。  相似文献   

19.
Production of 2,3-butanediol by newly isolated Enterobacter cloacae   总被引:2,自引:0,他引:2  
Enterobacter cloacae NRRL B-23289 was isolated from local decaying wood/corn soil samples while screening for microorganisms for conversion of l-arabinose to fuel ethanol. The major product of fermentation by the bacterium was meso-2,3-butanediol (2,3-BD). In a typical fermentation, a BD yield of 0.4 g/g arabinose was obtained with a corresponding productivity of 0.63 g/l per hour at an initial arabinose concentration of 50 g/l. The effects of initial arabinose concentration, temperature, pH, agitation, various monosaccharides, and multiple sugar mixtures on 2,3-BD production were investigated. BD productivity, yield, and byproduct formation were influenced significantly within these parameters. The bacterium utilized sugars from acid plus enzyme saccharified corn fiber and produced BD (0.35 g/g available sugars). It also produced BD from dilute acid pretreated corn fiber by simultaneous saccharification and fermentation (0.34 g/g theoretical sugars). Received: 17 December 1998 / Revision received: 9 March 1999 / Accepted: 20 March 1999  相似文献   

20.
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号