首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of Avicel-hydrolyzing activity was examined with respect to: mixed hardwood flour pretreated with 1% sulfuric acid for 9 s at 220 degrees C (PTW220), lignin prepared from PTW220 by either acid or enzymatic hydrolysis, and Avicel. Experiments were conducted at 60 degrees C for all materials, and also at 25 degrees C for PTW220. Based on transient adsorption results and reaction rates, times were selected at which to characterize adsorption at 60 degrees C as follows: PTW220, 1 min; lignin, 30 min; and Avicel, 45 min. Similar results were obtained for adsorption of cellulase activity to PTW220 at 25 and 60 degrees C, and for lignin prepared by enzymatic and acid hydrolysis. For all materials, adsorption was described well by a Langmuir equation, although the reversibility of adsorption was not investigated. Langmuir affinity constants (L/g) were: PTW220, 109; lignin, 17.9; Avicel, 4.3; cellulose from PTW220, >/=187. Langmuir capacity constants were 760 for PTW220 and 42 for Avicel; the cellulase binding capacity of lignin appeared to be very high under the conditions examined, and could not be determined. At low and moderate cellulase loadings at least, the majority of cellulase activity adsorbed to PTW220 is bound to the cellulosic component. The results indicate that PTW220, and its cellulose component in particular, differ radically from Avicel with respect to adsorption. Avicel-hydrolyzing activity and CMC-hydrolyzing activities were found to bind to Avicel with a constant ratio of essentially one, consistent with adsorption of a multi-activity complex. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Summary The adsorption behaviour of cellulase fromTrichoderma viride on microcrystalline celluloses with different specific surface areas was studied. The adsorption was found to fit a Langmuir isotherm. There was an increase in the maximum adsorption amount (Amax) as the specific surface area of microcrystalline cellulose increased. The values of Amax and adsorption equilibrium constant (K) decreased with increasing temperature. Thermodynamic parameters in adsorption were calculated from K. It was found from the enthalpy of adsorption, that van der Waals-Type interaction was responsible for adsorption of cellulase on microcrystalline cellulose. The adsorption process was exothermic and an adsorption enthalpy-controlled reaction.  相似文献   

3.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3 mg amorphous cellulose per milligram supernatant protein. At this loading, 90–100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410 L/g and a binding capacity of 0.249 g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3 hr for cellulase purified from Avicel cultures and 4 hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery.  相似文献   

5.
The adsorption of cellulase on cellulose and a lignacious residue was examined by using cellulase from Trichoderma reesei, hardwood pretreated by dilute sulfuric acid under high pressure, and a lignacious residue prepared by a complete enzymatic hydrolysis of the pretreated wood. A significant amount of cellulase was found to adsorb on the lignacious residue during the hydrolysis of the pretreated wood. Hence, the adsorption of enzyme on the lignacious residue as well as cellulose must be taken into account in the development of the hydrolysis kinetics. It was found that the adsorption of enzyme on cellulose and on the lignacious residue could be represented by Langmuir type isotherms. The data show that the pretreatment at a higher temperature results in more enzyme adsorption on the cellulose fraction and less on the lignacious residue fraction. The relationship between the hydrolysis rate and the amount of enzyme adsorbed is discussed.  相似文献   

6.
In order to investigate the interactive adsorption behaviors between each cellulase component purified from Trichoderma viride cellulase on microcrystalline cellulose, the adsorption of CMCase, Avicelase, and various compositions of CMCase and Avicelase was performed at 25–45°C. All adsorptions were found to apparently obey the Langmuir isotherm and the thermodynamic parameters, ΔHa, ΔSa, and ΔGa were calculated from the adsorption equilibrium constant, Kad. The adsorption process was found to be endothermic and an adsorption entropy-controlled reaction. The amount of adsorption of cellulase components decreased with increasing temperature and varied with a change in composition of the cellulase components. The maximum synergistic degradation occurred at the specific mass ratio of the cellulase components at which the maximum affinity of cellulase components occurred.  相似文献   

7.
The cost of cellulolytic enzymes is one barrier to the economic production of fermentable sugars from lignocellulosic biomass for the production of fuels and chemicals. One functional characteristic of cellulolytic enzymes that improves reaction kinetics over mineral acids is a cellulose binding domain that concentrates the catalytic domain to the substrate surface. We have identified maleic acid as an attractive catalytic domain with pK(a) and dicarboxylic acid structure properties that hydrolyze cellulose while producing minimal degradation of the glucose formed. In this study we report results of a rapid chromatographic method to assess the binding characteristics of potential cellulose binding domains for the construction of a synthetic cellulase over a wide range of temperatures (20 degrees to 120 degrees C). Aromatic, planar chemical structures appear to be key indicators of cellulose adsorption. Indole, the side-chain of the amino acid tryptophan, has been shown to reversibly adsorb to cellulose at temperatures between 30 degrees and 120 degrees C. Trypan blue, a polyaromatic, planar molecule, was shown to be irreversibly adsorbed to cotton cellulose at temperatures of <120 degrees C on the time scale of the experiments. These results confirm the importance of hydrophobic cellulose and the cellulose-binding component of cellulolytic enzymes and cellulolytic enzyme mimetics.  相似文献   

8.
Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (<?240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.  相似文献   

9.
Adsorption reversibility and competition between fractionated components of the Trichoderma reesei cellulase system were studied. Specific endoglucanase (EGI), nonspecific endoglucanases (EGII, EGIII), and cellobio-hydrolase (CBHI) were previously grouped according to their hydrolytic function. At 5 degrees C, direct evidence of exchange between adsorbed and free enzyme was obtained for each component using [(3)H] and [(14)C] radiolabeled tracers. No release of bound enzymes was detected upon dilution of the free enzyme solution. In simultaneous adsorption of enzyme pairs, CBHI was shown to predominate adsorption. Endoglucanase EGI was preferentially adsorbed over EGII and EGIII. Sequential adsorption studies have shown that interaction between enzyme components largely determines the degree of their adsorption. Evidence suggests that both common and distinct adsorption sites exist and that their occupation depends on which components are involved. Predominance in adsorption by any one of the enzyme components is decreased at 50 degrees C. Light microscopy and monitoring of sugar production during cellulose hydrolysis provided evidence that reduction in the ionic strength decreases the adsorption predominance of CBHI and enhances the synergism between the cellulase components.  相似文献   

10.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

11.
In the cellulase-cellulose reaction system, the adsorption of cellulase on the solid cellulose substrate was found to be one of the important parameters that govern the enzymatic hydrolysis rate of cellulose. The adsorption of cellulase usually parallels the rate of hydrolysis of cellulose. The affinity for cellulase varies depending on the structural properties of cellulose. Adsorption parameters such as the half-saturation constant, the maximum adsorption constant, and the distribution coefficient for both the cellulase and cellulsoe have been experimentally determined for several substrates. These adsorption parameters vary with the source of cellulose and the pretreatment methods and are correlated with the crystallinity and the specific surface area of cellulose substrates. The changing pattern of adsorption profile of cellulase during the hydrolysis reaction has also been elucidated. For practical utilization of cellulosic materials, the cellulose structural properties and their effects on cellulase adsorption, and the rate of hydrolysis must be taken into consideration.  相似文献   

12.
The activities (at pH 7 and 50 degrees C) of purified EGV (Humicola insolens) and CenA (Cellulomonas fimi) were determined on cotton fabrics at high and low levels of mechanical agitation. Similar activity measurements were also made by using the core domains of these cellulases. Activity experiments suggested that the presence of cellulose binding domains (CBDs) is not essential for cellulase performance in the textile processes, where high levels of mechanical agitation are applied. The binding reversibilities of these cellulases and their cores were studied by dilution of the treatment liquor after equilibrium adsorption. EGV showed low percentage of adsorption under both levels of agitation. It was observed that the adsorption/desorption processes of cellulases are enhanced by higher mechanical agitation levels and that the binding of cellulase with CBD of family I (EGV) is more reversible than that of CBD of the cellulase of family II (CenA).  相似文献   

13.
CenA is a bacterial cellulase (beta-1,4-glucanase) comprised of a globular catalytic domain joined to an extended cellulose-binding domain (CBD) by a short linker peptide. The adsorption of CenA and its two isolated domains to crystalline cellulose was analyzed. CenA and CBD.PTCenA' (the CBD plus linker) adsorbed rapidly to cellulose at 30 degrees C, and no net desorption of protein was observed during the following 16.7 h. There was no detectable adsorption of the catalytic domain. Scatchard plots of adsorption data for CenA and for CBD.PTCenA were nonlinear (concave upward). The adsorption of CenA and CBD.PTCenA exceeded 7 and 8 mumol/g cellulose, respectively, but saturation was not attained at the highest total protein concentrations employed. A new model for adsorption was developed to describe the interaction of a large ligand (protein) with a lattice of overlapping potential binding sites (cellobiose residues). A relative equilibrium association constant (Kr) of 40.5 and 45.3 liter.g cellulose-1 was estimated for CenA and CBD.PTCenA, respectively, according to this model. A similar Kr value (33.3 liter.g-1) was also obtained for Cex, a Cellulomonas fimi enzyme which contains a related CBD but which hydrolyzes both beta 1,4-xylosidic and beta-1,4-glucosidic bonds. It was estimated that the CBD occupies approximately 39 cellobiose residues on the cellulose surface.  相似文献   

14.
Summary Crystalline cellulose Avicel has been hydrolyzed byTrichoderma viride cellulase (Meicelase CEPB) under vaned agitation conditions and the effect of agitation on the adsorption of cellulase on cellulose has been studied. Agitation was found to enhance the hydrolysis pf crystalline cellulose; possibly the agitation enhances the adsorption of exoglucanase to shift the adsorption balance of exoglucanase and endoglucanase to a direction favorable for their synergistic action on the surface of cellulose.  相似文献   

15.
The adsorption mode of two highly purified cellulases, exo- and endo-type cellulases, from Irpex lacteus (Polyporus tulipiferae) was investigated by using pure cellulosic materials with different crystallinity as substrates. Adsorption of the two enzymes on the substrates was found to fit the Langmuir-type adsorption isotherm. Maximum amount of adsorbed enzyme obtained from the Langmuir plots showed an inverse correlation to the crystallinity of the substrate with both enzymes, and this value of endo-type cellulase was less dependent on the degree of crystallinity of substrates than that of exo-type cellulase, whose isotherms reached saturation in the range of low enzyme concentrations. The two enzymes showed relatively high affinities for all the substrates and their affinities increased with increasing crystallinity, but this tendency was less marked with endo-type cellulase than with exo-type one. In addition, large negative values of free energy change were observed on the adsorption of both enzymes, and the values became more negative with increasing crystallinity. Consequently, both cellulases showed high adsorption on crystalline cellulose and the adsorption process became smoother with increasing crystallinity. The adsorption of the two types of cellulases was endothermic with an increase in entropy, especially for amorphous cellulose, suggesting the occurrence of water release from the substrates during enzyme adsorption. In addition, the changes in thermodynamic parameters (delta H, delta S, and delta G) in adsorption of exo-type cellulase were larger than in that of endo-type enzyme.  相似文献   

16.
Acetic acid formation in Escherichia coli fermentation   总被引:2,自引:0,他引:2  
Theoretical analysis of cellulase product inhibition (by cellobiose and glucose) has been performed in terms of the mathematical model for enzymatic cellulose hydrolysis. The analysis showed that even in those cases when consideration of multienzyme cellulase system as one enzyme (cellulase) or two enzymes (cellulase and beta-glucosidase) is valid, double-reciprocal plots, usually used in a product inhibition study, may be nonlinear, and different inhibition patterns (noncompetitive, competitive, or mixed type) may be observed. Inhibition pattern depends on the cellulase binding constant, enzyme concentration, maximum adsorption of the enzyme (cellulose surface area accessible to the enzyme), the range in which substrate concentration is varied, and beta-glucosidase activity. A limitation of cellulase adsorption by cellulose surface area that may occur at high enzyme/substrate ratio is the main reason for nonlinearity of double-reciprocal plots. Also, the results of calculations showed that material balance by substrate, which is usually neglected by researchers studying cellulase product inhibition, must be taken into account in kinetic analysis even in those cases when the enzyme concentration is rather low. (c) 1992 John Wiley & Sons, Inc.  相似文献   

17.
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were also carried out using an in situ UV-Vis spectrophotometric technique. The cellulose accessibilities measured by the solute exclusion and a cellulose-binding module (CBM)-containing green fluorescent protein (TGC) adsorption methods correlate well for both sets of samples. The substrate enzymatic digestibilities (SEDs) of the hornified substrates are proportional to the measured cellulose accessibilities. Approximately over 90% of the SED was contributed by the accessible pore surfaces of the hornified substrates, suggesting that the substrate external surface plays a minor role contributing to cellulose accessibility and SED. The cellulose accessibilities of the pretreated substrates correlated well with the amounts of cellulase adsorbed. The SEDs of these substrates directly correlated with the amounts of adsorbed cellulase.  相似文献   

18.
Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of β‐glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (σsolids = 195 mg/g solid) followed by dilute acid (σsolids = 170.0 mg/g solid) and lime pretreated solids (σsolids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (σsolids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (σcellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (σlignin = 57 mg/g lignin) followed by dilute acid lignin (σlignin = 74 mg/g lignin). AFEX lignin also had the lowest β‐glucosidase capacity (σlignin = 66.6 mg/g lignin), while lignin from SO2lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
超临界CO2流体对纤维素酶催化反应的影响   总被引:4,自引:0,他引:4  
超临界二氧化碳流体预处理对纤维素超分子结构及纤维素酶催化反应有重要影响。一定含水量的微晶纤维素用SC-CO2在10MPa,50℃处理30min,其结构发生了有利于进一步被酶解的变化。上述超临界条件单独作用于纤维素酶时,并未造成酶催化活力的降低;但与纤维素共同进行SC—CO2处理时,纤维素酶则失去催化活性,但这种处理却能提高纤维素进一步被酶解的效率。一定范围内处理时的酶用量与酶解效率的增加正相关。纤维素的含水量对SC-CO2处理后的酶解效率有显影响。  相似文献   

20.
Park EY  Naruse K  Kato T 《Bioresource technology》2011,102(10):6120-6127
Cellulase production in cultures of Acremonium cellulolyticus was significantly improved by using waste milk pack (MP) that had been pretreated with cellulase. When MP cellulose pretreated with cellulase (3 FPU/g MP) for 12 h was used as the sole carbon source for A. cellulolyticus culture in a 3-L fermentor, the cellulase activity was 16 FPU/ml. This was 25-fold higher (0.67 FPU/ml) compared with untreated MP cellulose and was comparable to that achieved with pure cellulose (Solka Floc). As the pretreatment progressed, roughness on the surface of untreated MP cellulose became to be smooth, but development of fissures on the surface of pretreated MP cellulose was observed. Cellulase pretreatment of MP increased both the accessibility of A. cellulolyticus to the surface and number of adsorption sites of cellulase on the surface of MP cellulose, leading to improved cellulase production in the A. cellulolyticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号