首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基础研究证实,多种细胞移植可以促进周围神经修复,其中来源丰富的骨髓单个核细胞,因具有取材过程简单、无交叉感染风险、无免疫排斥、可以自体移植等诸多优点,是目前重要的候选细胞之一。本文就近期有关骨髓单个核细胞的神经修复作用机制的研究、细胞植入修复受损周围神经的文献、以及与各种生物材料复合应用构建的组织工程化神经等方面最新进展进行综述,以期促进该领域基础向临床应用的转化。  相似文献   

2.
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Role of thyroid hormones and their receptors in peripheral nerve regeneration.   总被引:11,自引:0,他引:11  
After peripheral nerve injury in adult mammals, reestablishment of functional connections depends on several parameters including neurotrophic factors, the extracellular matrix, and hormones. However, little is known about the contribution of hormones to peripheral nerve regeneration. Thyroid hormones, which are required for the development and maturation of the central nervous system, are also important for the development of peripheral nerves. The action of triiodothyronine (T3) on responsive cells is mediated through nuclear thyroid hormone receptors (TRs) which modulate the expression of specific genes in target cells. Thus, to study the effect of T3, it is first necessary to know whether the target tissues possess TRs. The fact that sciatic nerve cells possess functional TRs suggests that these cells can respond to T3 and, as a consequence, that thyroid hormone may be involved in peripheral nerve regeneration. The silicone nerve guide model provides an excellent system to study the action of local administration of T3. Evidence from such studies demonstrate that animals treated locally with T3 at the level of transection have more complete regeneration of sciatic nerve and better functional recovery. Among the possible regulatory mechanisms by which T3 enhances peripheral nerve regeneration is rapid action on both axotomized neurons and Schwann cells which, in turn, produce a lasting and stimulatory effect on peripheral nerve regeneration. It is probable that T3 up- or down-regulates gene expression of one or more growth factors, extracellular matrix, or cell adhesion molecules, all of which stimulate peripheral nerve regeneration. This could explain the greater effect of T3 on nerve regeneration compared with the effect of any one growth factor or adhesion molecule.  相似文献   

12.
We report a case of a 23-year-old woman with progressive hemifacial atrophy. She showed an atrophic change on the left side of her face for 8 years. A skin biopsy obtained from the lesion revealed the fibrotic changes in the deep dermis and adipose tissue with infiltrations of lymphocytes and plasma cells. She underwent the augmentation using a deepithelialized anteromedial thigh flap with endoscopic assistance. A specimen of the peripheral facial nerve taken from the region adjacent to the skin lesion during the operation showed atrophy of neurofibers with vacuole degeneration. On an electron microscopic examination, a high degree of degeneration of myelinated and unmyelinated axons was observed. These findings may provide direct evidence that atrophic changes of nerve fibers are closely related with the pathology of this disease.  相似文献   

13.
14.
15.
16.
Reaction products of selenite with thiols were tested for an inhibitory effect on amino acid incorporation in a cell-free system derived from rat liver and on protein synthesis in intact P815 and L1210 cells. In the cell-free system maximum inhibition, up to 96%, was reached at about 10 microM selenium. In intact cells inhibitory effect varied depending on which reaction product or cell line was used. Maximum inhibition was obtained after 30 min of incubation with selenium concentrations ranging from 0.25 microM to over 7 microM. Selenite itself also inhibited protein synthesis of L1210 cells, but only after 90 min of incubation and starting at selenium concentrations of 2 microM. Inhibition of protein synthesis in intact cells was followed by cell death. Pre-incubation of the reaction products of a monothiol (2-propanethiol) and of a vicinal dithiol (2,3-dimercapto-1-propanol) in culture medium showed a rapid decrease of the inhibitory capability of the product from the monothiol, but not of the product from the dithiol. The results indicate that selenite and a thiol react to form products which have differential toxic effects to cells in vitro.  相似文献   

17.
18.
19.
20.
Millions of people worldwide are affected by peripheral nerve injuries (PNI), involving billions of dollars in healthcare costs. Common outcomes for patients include paralysis and loss of sensation, often leading to lifelong pain and disability. Engineered Neural Tissue (EngNT) is being developed as an alternative to the current treatments for large-gap PNIs that show underwhelming functional recovery in many cases. EngNT repair constructs are composed of a stabilised hydrogel cylinder, surrounded by a sheath of material, to mimic the properties of nerve tissue. The technology also enables the spatial seeding of therapeutic cells in the hydrogel to promote nerve regeneration. The identification of mechanisms leading to maximal nerve regeneration and to functional recovery is a central challenge in the design of EngNT repair constructs. Using in vivo experiments in isolation is costly and time-consuming, offering a limited insight on the mechanisms underlying the performance of a given repair construct. To bridge this gap, we derive a cell-solute model and apply it to the case of EngNT repair constructs seeded with therapeutic cells which produce vascular endothelial growth factor (VEGF) under low oxygen conditions to promote vascularisation in the construct. The model comprises a set of coupled non-linear diffusion-reaction equations describing the evolving cell population along with its interactions with oxygen and VEGF fields during the first 24h after transplant into the nerve injury site. This model allows us to evaluate a wide range of repair construct designs (e.g. cell-seeding strategy, sheath material, culture conditions), the idea being that designs performing well over a short timescale could be shortlisted for in vivo trials. In particular, our results suggest that seeding cells beyond a certain density threshold is detrimental regardless of the situation considered, opening new avenues for future nerve tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号