首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transmission electron microscope study of the antennal sensilla of the whitefly Trialeurodes vaporariorum and Aleyrodes proletella (Homoptera : Aleyrodidae) revealed that of the sensilla unique to the antennal flagellum (basiconic, coeloconic and small digitate-tipped sensory pegs), basiconic and coeloconic sensilla occur as subtypes. Four subtypes of basiconic cone sensilla occur on the flagella of T. vaporariorum and 3 on A. proletella. All the subtypes of basiconic sensilla have an ultrastructure typical of olfactory sensilla and probably have a primary olfactory function. Two subtypes of coeloconic sensilla occur on the flagella of both species. Their ultrastructure suggests primarily a chemosensory function. The digitate-tipped sensory peg of both species possesses a triad of neurones which have ultrastructural characteristics similar to the known thermo-/hygroreceptors of other insect species. The other sensilla, which occur on the antennae of the whiteflies, include cheatae, campaniform and subcuticular sensilla, all of which have an ultrastructure typical of mechanoreceptors.  相似文献   

2.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour.  相似文献   

3.
Bootettix argentatus (Orthoptera : Acrididae) is a monophagous grasshopper in the subfamily Gomphocerinae. The numbers of chemoreceptors in most groups on the mouthparts increase with each molt and are generally similar in the 2 sexes. There are fewer sensilla in the A3 groups than in other gomphocerine grasshoppers, and the possibility that this is related to host-plant specificity is discussed. Only very small numbers of sensilla are present on the pulvillar pads of the tarsi and on the arolia. The number of sensilla on the antennae is proportional to the length of the flagellum and coeloconic sensilla comprise 30–35%. Most of the remainder are multiporous basiconic sensilla. Adult males have more antennal sensilla than adult females.  相似文献   

4.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

5.
The antennae are a critically important component of the ant’s highly elaborated chemical communication systems. However, our understanding of the organization of the sensory systems on the antennae of ants, from peripheral receptors to central and output systems, is poorly understood. Consequently, we have used scanning electron and confocal laser microscopy to create virtually complete maps of the structure, numbers of sensory neurons, and distribution patterns of all types of external sensilla on the antennal flagellum of all types of colony members of the carpenter ant Camponotus japonicus. Based on the outer cuticular structures, the sensilla have been classified into seven types: coelocapitular, coeloconic, ampullaceal, basiconic, trichoid-I, trichoid-II, and chaetic sensilla. Retrograde staining of antennal nerves has enabled us to count the number of sensory neurons housed in the different types of sensilla: three in a coelocapitular sensillum, three in a coeloconic sensillum, one in an ampullaceal sensillum, over 130 in a basiconic sensillum, 50–60 in a trichoid-I sensillum, and 8–9 in a trichoid-II sensillum. The basiconic sensilla, which are cuticular hydrocarbon-receptive in the ant, are present in workers and unmated queens but absent in males. Coelocapitular sensilla (putatively hygro- and thermoreceptive) have been newly identified in this study. Coelocapitular, coeloconic, and ampullaceal sensilla form clusters and show biased distributions on flagellar segments of antennae in all colony members. The total numbers of sensilla per flagellum are about 9000 in unmated queens, 7500 in workers, and 6000 in males. This is the first report presenting comprehensive sensillar maps of antennae in ants.  相似文献   

6.
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High‐resolution SEM observation revealed the presence of multiple nanoscale wall‐pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin‐walled, while the trichoid sensilla are thick‐walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.  相似文献   

7.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

8.
External morphology of antennal sensilla on female and male Trichogramma australicum (Hymenoptera : Trichogrammatidae) was examined using scanning electron microscopy. Antennae show strong sexual dimorphism in structure and types of sensilla. The female antenna displays 14 types of sensilla: basiconic capitate peg sensilla (types 1 and 2), campaniform sensilla, chaetica sensilla (types 1–3), coeloconic sensilla, falcate sensilla, placoid sensilla (types 1 and 2), styloconic sensilla and trichoid sensilla (types 1–3). The male antenna displays 12 types of sensilla: basiconic capitate peg sensilla (type 2), campaniform sensilla, chaetica sensilla (types 1–5), coeloconic sensilla, placoid sensilla (type 1), and trichoid sensilla (types 3–5). Falcate and styloconic sensilla occur only on the female antenna. Both sensilla probably are associated with host examination, host discrimination and oviposition behaviour. Male antennal trichoid sensilla types 4 and 5 are probably associated with courtship behaviour, because these types occur only on the male. We propose the term “falcate sensilla” for a unique female antennal sensilla; the number of falcate sensilla may be used for identification of Trichogramma spp. In addition, we report the presence of placoid sensilla type 2 and difference in structure of coeloconic sensilla in T. australicum. Variation in structure and position of antennal sensilla are discussed.  相似文献   

9.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

10.
The labial palpus of the elephant louse Haematomyzus elephantis has six sensilla that represent three different types: trichoid, basiconic, and styloconic. Two rows of basiconic sensilla are situated on the dorsal and ventral surfaces of the rostrum, and each row consists of three sensilla. Male and female antennae have 15–17 trichoid sensilla situated on the scape, pedicel, and three antennal annuli. Both sexes have two sensilla basiconica on the dorsal surface of the pedicel near the junction of the scape and pedicel. Two coeloconic (tuft) sensilla are situated on the antennae of both sexes, one sensillum on each of the last two annuli. There are three plate organs, two on the last annulus and one on the penultimate annulus of the male and female antennae. Sexual dimorphism is exhibited in the male and female antennae, in that the male has about twice as many sensilla basiconica on the apex of the last annulus as does the female. The total number of sensilla basiconica on the apex of the male antennae is at least two times the number that is known to be present in any other species of lice. © 1992 Wiley-Liss, Inc.  相似文献   

11.
The typology, number and placement of antennal sensilla of the click beetle Melanotus villosus (Geoffroy) (Coleoptera: Elateridae) were studied using scanning electron microscopy. On both the males and females the antennae are made up of the scape, pedicel and nine flagellomeres. Two types of basiconic sensilla, three types of trichoid sensilla, one type of styloconic sensilla, one type of chetoid sensilla, dome-shaped sensilla, grooved pegs, and Böhm sensilla all appear on the antennae of the beetles of both sexes, with the exception of trichoid sensilla type II, whose large number (average of 1635 hairs per antenna) was found only in male beetles. Sensilla trichodea type II evidently respond to the sex pheromone produced by the female beetle. Unlike the other two click beetles, studied up till now, Agriotes obscurus and Limonius aeruginosus, the trichoid and basiconic sensilla of M. villosus, whose proven or assumed function is olfactory, are located predominantly on the flagellomeres ventral extensions. It is assumed that the placement of the olfactory sensilla, mainly on the ventral side of M. villosuss antennae, and their more or less even distribution on the flagellomeres, can be seen as morphological adaptation of this species of insect, whose specific behavioural reaction of olfactory searching is flying, both before and after contact with an odour plume.  相似文献   

12.
李宗波  杨培  彭艳琼  杨大荣 《昆虫学报》2012,55(11):1272-1281
为探索木瓜榕传粉榕小蜂Ceratosolen emarginatus寄主定位机制, 应用扫描电镜和透射电镜观察了其雌蜂触角感器的类型、 分布和超微形态。结果显示: 木瓜榕传粉榕小蜂雌蜂触角呈膝状, 由柄节、 梗节和11个鞭小节组成的鞭节组成, 第3鞭小节着生一坚固的脊骨突。触角上共发现7类11种感器, 分别为毛形感器、 刺形感器、 锥形感器(包括单孔形和多孔形)、 多孔板形感器(包括长形和圆形)、 腔锥形感器(分为3种类型)、 栓锥形乳突状感器、 角锥形感器。结合表面特征和内部结构, 锥形感器、 多孔板形感器、 栓锥形乳突状感器和腔锥形感器类型1为有孔型, 为化学感器; 无孔型的毛形感器和刺形感器是机械感器, 但腔锥形感器类型2和3为本体感器或湿热压力感器; 最为特异的为角锥形感器, 其厚壁无孔, 逆向触角主轴, 为该科昆虫所特有, 推测可防止传粉榕小蜂进入榕果时滑脱。这些结果将有助于理解木瓜榕传粉榕小蜂特异性行为, 并为下一步开展电生理研究, 揭示其信息化学物质利用和分配模式奠定基础。  相似文献   

13.
Antennal sensilla were compared in females and males of two sympatric mymarid Hymenoptera, Anaphes victus and A. listronoti which are, respectively, solitary and gregarious parasitoids of eggs of the carrot weevil Listronotus oregonensis (Coleoptera, Curculionidae). Both species are morphologically very similar in the area where they are sympatric. The external morphology of the sensilla was studied using scanning electron microscopy. Female antennae have seven different types of sensilla, morphologically similar in the two species: trichoid sensilla, which are putative mechanosensilla, sensilla chaetica types 1, 3 and 4, which are presumably contact chemosensilla, and sensilla chaetica type 2 and basiconic and placoid sensilla, which are presumed to be olfactory sensilla. The major difference between the two species is the number of sensilla chaetica type 4, of which 6–9 are found on the antennal club in A. victus, while 10–12 are present in A. listronoti. The antennae of the males of both species are similar in morphology and in the number and distribution of their four types of sensilla, i.e. trichoid sensilla, sensilla chaetica type 1 and basiconic and placoid sensilla. Accepted: 23 November 1998  相似文献   

14.
伪鞘榕小蜂Sycoscapter trifemmensis是一种寄生于鸡嗉子榕间花期榕果的专性寄生蜂,雌雄两性繁殖策略分化明显,为更好理解和诠释雌蜂寄主定位和雄蜂配偶识别机制,有必要对两性的触角感器进行观察。运用环境扫描电镜观察,对比和探讨了伪鞘榕小蜂雌雄成虫的触角和触角感器类型、分布、数量及其生态适应性。结果表明:雌蜂触角鞭节由11鞭小节组成,总长817.82±33.23μm,分布有毛形感器、刺形感器(类型1)、锥形感器(类型1)、多孔板形感器(类型1)、栓锥形乳突状感器5类5种;雄蜂触角鞭节仅由6鞭小节组成,全长为雌蜂的1/3,且各节有明显的缩短和增粗特征,着生感器包括毛形感器、刺形感器(类型2和类型3)、锥形感器(类型1和类型2)、多孔板形感器(类型2)、腔锥形感器5类7种。雌蜂触角感器的数量与分布显著高于雄蜂,且同类型感器在雌蜂上具有明显的延伸、增粗、分支的特征,以板形感器和锥形感器最为突出。伪鞘榕小蜂雌雄成虫的触角及其感器有明显的性二型,特别是与化学信息识别相关的感器,反映了雌雄蜂在不同生态环境和繁殖压力下的形态分化、行为策略和生态适应。  相似文献   

15.
The earwig, Anisolabis maritima (Dermaptera: Carcinophoridae), is one of the most significant insects in KSA because, it was recorded in Saudi Arabia as a beneficial predator on eggs and newly hatched larvae of the red palm weevil, Rhyncophorus ferrugineus. We examined the external morphology of the antennal sensilla of males and females of A. maritima using scanning electron microscopy (SEM). The filiform antennae of A. maritima were of the conventional type comprising a basal scape, pedicle and a long, thread-like flagellum, which was composed of 12 flagellomeres of males and 16 flagellomeres of females. Six morphologically unique sensillar types were found and described on the antennae of males and females of A. maritima. Of those identified, there were three types of porous trichoid sensilla (long, curved and arcuate), and two types of basiconic sensilla (short and curved), and one type of aporous trichoid sensilla. The shape, external morphology and array of sensilla on the antennae of males and females of A. maritima were similar.  相似文献   

16.
Nine different types of sensilla have been identified on the antenna of the cassava mealybug Phenacoccus manihoti (Homoptera : Pseudococcidae) with scanning and transmission electron microscopes. Trichoid sensilla, distributed on all segments of the antenna and innervated by a single mechanoreceptive dendrite, have the characteristics of exteroceptors. A campaniform sensillum located on the pedicel and one basiconic sensillum on the flagellum have the characteristics of proprioceptors. Coeloconic sensilla, located ventrally on the pedicel and flagellum, related to poreless sensilla with inflexible sockets, have the characteristics of thermo/hygroreceptors. Uniporous sensilla with a mechanoreceptive dendrite (smooth pegs P1 and P2, grooved pegs P3) and multiporous chemosensilla (grooved pegs P4 and P5), present on the tip of the flagellum, have, respectively, the characteristics of gustatory and olfactory receptors. The results of this study seem to suggest that the cassava mealybug has sensory equipment on its antennae that can detect, by olfaction and contact, chemicals released by the plant.  相似文献   

17.
The antennal receptors of the adult male and female ladybird beetle, Semiadalia undecimnotata (Coleoptera: Coccinellidae), were examined by scanning and transmission electron microscopy. Twelve types of receptors were characterized and grouped into 5 morphological classes: Böhm, trichoid, coeloconic, basiconic, and chetiform sensilla. Sensory function was determined on the basis of sensillar ultrastructure and electrophysiological response. Olfactory sensilla are confined in both sexes to the 2 terminal antennal segments. In contrast, gustatory and mechanosensitive organs are present along the entire length of the antennae. Sexual dimorphism of antennal receptors is limited to the latter 2 functional classes. The principal characteristics of this dimorphism are the following: a) males possess 540 sensilla (all types), while females possess only 500; b) males exhibit 2 types of taste receptors not present in females; c) females exhibit one type of mechanoreceptor absent in males; d) the 3 sex-specific types of sensilla, which occupy the same position in males and females, are confined to the inner side of the antennae. The possible role of male-specific sensilla in intersexual communication is discussed.  相似文献   

18.
《Journal of Asia》2019,22(1):296-307
Pseudoligosita yasumatsui Viggiani and Subba Rao 1978 (Hymenoptera: Trichogrammatidae) is a common egg parasitoid of rice insect pests. The surface morphology of the antenna and ovipositor on P. yasumatsui was examined using scanning electron microscopy. The antenna of P. yasumatsui is geniculate in shape, hinged at the scape-pedicel joint, approximately 190 μm in length and consists of seven antennomeres. In total, the male and female antennae have ten different types of sensilla: trichoid sensilla type 1, 2, 3, 4, 5, 6, campaniform sensilla, basiconic sensilla, and placoid sensilla type 1 and 2. The flagellum of the female antenna is covered with cuticular pores, which are absent on the male antennal flagellum. The distal extremity of its ovipositor stylet has campaniform sensilla and styloconic sensilla. Trichoid sensilla found on its apical abdomen part may play a role in the host detection and egg placement. The types and distribution of antennal and ovipositor sensilla on the parasitoid were discussed.  相似文献   

19.
Metaphycus parasaissetiae Zhang & Huang (Hymenoptera: Encyrtidae) is an important adult parasitoid of Parasaissetia nigra Nietner (Hemiptera: Coccoidea). The external morphology of the antennal sensilla of male and female M. parasaissetiae was examined using scanning electron microscopy. The geniculate antennae of male and female M. parasaissetiae were composed of a scape with a basal radicula, a barrel-shaped pedicel, and a long flagellum. Twelve morphologically distinct types of sensilla were identified, including multiporous placoid sensilla, campaniform sensilla, finger-like sensilla, multiporous basiconic sensilla (BS-1), three aporous types of basiconic sensilla (BS-2, BS-3, and BS-4), two types of aporous trichoid sensilla (TS-1 and TS-3), a type of multiporous trichoid sensilla (TS-2), and two types of sensilla chaetica (CH-1 and CH-2). Sex dimorphism in the sensilla composition of M. parasaissetiae is also observed. Major differences between the sexes were found in the number, distribution, shape, structure, and size of the identified sensilla. We also discuss on the functional aspects of these sensilla to elucidate the mechanisms involved in host searching and courtship behavior of M. parasaissetiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号