首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to evaluate the effects of developmental stage of in vitro produced (IVP) ovine embryos and the type of vitrification procedure used on embryo cryotolerance.The IVP embryos were vitrified at five different developmental stages: 4-, 8- and 16-cell, morula, and blastocyst. For each stage, half of the embryos were vitrified in either 30 μl 3.4 M glycerol + 4.6 M ethylene glycol in straw (method 1) or in <0.1 μl 2.7 M ethylene glycol + 2.1 M Me2SO + 0.5 M sucrose placed on the inner surface of a straw (method 2) of vitrification solution, based on two different procedures. After warming embryo viability was determined by assessing the rates of re-expansion, survival, and blastocyst formation. The quality of surviving embryos was evaluated by their hatching rate and blastocyst cell numbers. In both vitrification methods, embryo survival progressively increased as the developmental stage progressed. In method 1 few of the early cleavage stage embryos (4-, 8- and 16-cell) could reach to the blastocyst stage following warming. There was no significant difference in blastocyst cell numbers (total, ICM, and trophectoderm cells) or hatching rate of blastocysts derived from vitrified embryos at different developmental stages. The number of dead cells in vitrified blastocysts in method 1 was higher than for non-vitrified blastocysts (P < 0.05). The number of apoptotic cells in vitrified blastocysts was higher than for non-vitrified counterparts (P < 0.05). In conclusion, both the developmental stage of IVP ovine embryos and the method of vitrification have a significant effect on the viability and developmental competence of sheep embryos.  相似文献   

2.
《Reproductive biology》2023,23(2):100750
This article addresses morphokinetic changes and the extent of apoptosis in vitrified and non-vitrified in vitro-derived ovine blastocysts. Cumulus-oocyte complexes were collected after ovarian scarification obtain after slaughter and in vitro maturation was performed in TCM 199 medium supplemented with Earle’s Salt, 10 % of FBS, and 5 µg/mL of LH/FSH at 38 °C for 24 h. After maturation, the oocytes were co-incubated with thawed ram semen (IVF) for 19 h.Embryo development was monitored with the aid of the Primo Vision Time-Lapse (TL) system. Twenty-five out of thirty-one ovine blastocysts that were vitrified using the Cryotop system at the early blastulation stage of development subsequently re-expanded. Both the vitrified (n = 25) and non-vitrified (control group: n = 28) blastocysts were examined for detection of apoptosis (TUNEL assay) and total blastomere counts at the time they attained the expanded blastocyst stage. Blastocyst formation occurred earlier in non-vitrified than in vitrified ovine embryos (147:49 ± 20:23 compared with 156:46 ± 19:24; hours:minutes post-insemination; mean ± SD; P < 0.05). The average number of blastocyst collapses was greater (2.45 ± 1.64 compared with 1.45 ± 1.64), but the number of weak contractions was less for vitrified than non-vitrified ovine blastocysts (P < 0.05). The mean number of blastomeres was greater (131.8 ± 38.6 compared with 91.5 ± 18.3; P < 0.05) while the number of TUNEL-positive cells (4.4 ± 1.6 compared with 6.3 ± 2.3) and apoptotic index (3.4 ± 1.2 % compared with 6.9 ± 2.6 %) were less (P < 0.05) in non-vitrified compared with vitrified blastocysts. Vitrification of ovine embryos was associated with a delayed blastocyst formation, greater numbers of apoptotic cells, significant reduction in the number of blastomeres, and higher/lower incidence of blastocyst collapse/weak contractions.  相似文献   

3.
Vitamin K2 (VK2), acts as an electron carrier in mitochondria and thereby effects reactive oxygen species (ROS) and ATP production. This study evaluates role of VK2 on in vitro developmental competency and cryo-survival of pre-implantation ovine embryos. Initially the optimal and beneficial concentration of VK2 on compaction and blastocyst formation rates was defined (0.1 μM). Subsequently, it was shown that 0.1 μM VK2, at blastocyst stage, reduces H2O2 production, increase the expression of mitochondrial related gene and improved embryos quality. We further assessed presence VK2 supplementation before and/or after vitrification of in vitro derived blastocysts. Our results reveal that presence of VK2 before and after vitrification improves rates of blastocysts re-expansion (88.19± 3.37% vs 73.68± 1.86%, P < 0.05) and hatching (49.55± 4.37% vs 32.7± 3.32%) compared to control group. These observation were consistent with reduction in H2O2 production and improved in expression of mitochondrial related genes. However, VK2 before or after vitrification, not only had no positive effect on these two parameters, but also significantly reduced these parameters. Therefore, in concordance with pervious report in bovine, we show that VK2 supplementation post genomic activation (Day 3–7) improved developmental competency of ovine in vitro derived embryos. We also showed that presence of VK2 after vitrification improves the cryo-survival of ovine embryos.  相似文献   

4.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The objective of this study was to compare bovine and ovine oocytes in terms of (1) developmental rates following maturation, fertilization, and culture in vitro, (2) the quality of blastocysts produced in vitro, assessed in terms of their ability to undergo cryopreservation, and (3) the ultrastructural morphology of these blastocysts. In vitro blastocysts were produced following oocyte maturation/fertilization and culture of presumptive zygotes in synthetic oviduct fluid. In vivo blastocysts were used as a control from both species. In Experiment 1, the cleavage rate of bovine oocytes was significantly higher than that of ovine oocytes (78.3% vs. 58.0%, respectively, P < 0.001). The overall blastocyst yield was similar for both species (28.7% vs. 29.0%). However, when corrected for cleavage rate, significantly more ovine oocytes reached the blastocyst stage at all time-points (36.6% vs. 50.0% on day 8, for bovine and ovine, respectively, P < 0.001). Following vitrification, there was no difference in survival between in vivo produced bovine and ovine blastocysts (72 hr: 85.7% vs. 75.0%). However, IVP ovine blastocysts survived at significantly higher rates than IVP bovine blastocysts at all time points (72 hr: 47.4% vs. 18.1%, P < 0.001). At the ultrastructural level, compared with their in vivo counterparts, IVP blastocysts were characterized by a lack of desmosomal junctions, a reduction in the microvilli population, an increase in the average number of lipid droplets and increased debris in the perivitelline space and intercellular cavities. These differences were more marked in bovine IVP blastocysts, which also displayed electron-lucent mitochondria and large intercellular cavities. These observations may in part explain the species differences observed in terms of cryotolerance. In conclusion, the quality of ovine blastocysts was significantly higher than their bovine counterparts produced under identical in vitro conditions suggesting inherent species differences between these two groups affecting embryo quality.  相似文献   

6.
The in vitro development of porcine nuclear transfer embryos constructed using primary cultures from day 25 fetal fibroblasts which were either rapidly dividing (cycling) or had their cell-cycle synchronized in G0/G1 using serum starvation (serum-starved) was examined. Oocyte-karyoplast complexes were fused and activated simultaneously and then cultured in vitro for seven days to assess development. Fusion rates were not different for either cell population. The proportion of reconstructed embryos that cleaved was higher in the cycling group compared to the serum-starved group (79 vs. 56% respectively; P < 0.05). Development to the 4-cell stage was not different using either population. Both treatments supported similar rates of development to the morula (1.5 vs. 7%, cycling vs. serum-starved) and blastocyst stage (1.5 vs. 3%, cycling vs. serum-starved). The blastocyst produced using cycling cells had a total cell number of 10. Total cell numbers for the three blastocysts produced serum-starved cells were 22, 24, and 33. These blastocysts had inner cell mass numbers of 0, 15, and 4, respectively. Six hundred and thirty-five nuclear transfer embryos reconstructed using serum-starved cells were transferred to 15 temporarily mated recipients for 3-4 days. Of these, 486 were recovered (77% recovery rate) of which 106 (22%) had developed to the 4-cell stage or later. These were transferred to a total of 15 recipients which were either unmated or mated. Seven recipients farrowed a total of 51 piglets. Microsatellite analysis revealed that none of these were derived from the nuclear transfer embryos transferred.  相似文献   

7.
Modified blastocyst injection techniques were used to inject immunosurgically isolated sheep x goat hybrid inner cell masses (ICM) into ovine blastocysts, with subsequent transfer of composite embryos to ovine recipients. Hybrid embryos were collected from does artificially inseminated with Barbados ram semen. A total of 13 live and 2 aborted offspring resulted from the 34 composite embryos transferred to recipient ewes (38% embryo survival). Of the 15 offspring, 4 exhibited phenotypic hybridism and 2 (13%) of these were determined to be hybrid mean value of -sheep chimeras by karyotype, serum protein and isoenzyme analyses, and fiber identification. Each of the 4 was produced by an injection procedure that involved damage of the ovine host ICM. One additional offspring was unusual in appearance, but the presence of hybrid cells was not proven. Similarly, caprine ICM were immunosurgically isolated and injected into ovine blastocysts that were then transferred to ovine recipients. Of the 13 composite embryos transferred, 12 offspring were produced (92% embryo survival). Eleven were overt goat mean value of -sheep chimeras and, of these, 7 were also blood chimeras. The hybrid ICM was shown to be capable of contributing to normal embryonic and fetal development after injection into an ovine blastocyst but may be less likely to be incorporated with the ovine host ICM than is the caprine ICM.  相似文献   

8.
Although the success rate of sheep cloning remains extremely low, using a histone deacetylase (HDAC) inhibitor to increase histone acetylation in SCNT embryos has significantly enhanced developmental competence in several species. The objective was to determine whether HDAC inhibitors trichostatin A (TSA) and the novel inhibitor Scriptaid enhance cloning efficiency in sheep cumulus cell (passage 2) reconstructed embryos. In this study, 0.2 μmol/L Scriptaid yielded a high blastocyst development rate, almost twice that of the untreated group (25/103 [24.3%] vs. 12/101 [11.9%]; P < 0.05). Furthermore, 0.2 μmol/L Scriptaid was more effective than 0.05 μmol/L TSA in terms of the blastocyst percentage for cloned ovine embryos in vitro (17/66 [25.7%] vs. 11/65 [16.8%]; P < 0.05). Furthermore, treatment with Scriptaid increased acetylation (compared with the Control, P < 0.05) at lysine residue 12 of histone H4 (acH4K12) and lysine residue 9 of histone H3 (acH3K9) in one-, two-, four-, and eight-cell stages, as well as blastocyst stages, in cloned embryos. In conclusion, Scriptaid was more effective than TSA to enhance in vitro developmental competence in ovine SCNT embryos; furthermore, Scriptaid improved epigenetic status.  相似文献   

9.
A series of experiments were conducted to determine whether bovine blastocysts would develop beyond the blastocyst stage in the ovine uterine environment. In Experiment 1, in vitro matured, fertilized and cultured (IVM/IVF/IVC) expanded bovine blastocysts were transferred into uteri of ewes on Day 7 or 9 of the estrous cycle and collected on Day 14 or 15 to determine if the bovine blastocysts would elongate and form an embryonic disk. Springtime trials with ewes that were synchronized with a medroxyprogesterone acetate (MAP) sponge resulted in a 78% blastocyst recovery rate, and 68% of the recovered spherical or elongated embryos had embryonic disks. In Experiment 2, transfer of 4-cell bovine embryos to the oviducts of ewes at Day 3 resulted in a lower recovery (47 vs 80%) than the transfer of blastocysts at Day 7 when embryos were recovered at Day 14. However, the percentage of embryos containing embryonic disks was higher for embryos transferred at the 4-cell stage (71%) than for embryos transferred as blastocysts (50%). In Experiment 3, IVF embryos from super-ovulated cows or Day 8 in vitro produced embryos transferred to cows were collected at Day 14 and were found to be similar in size to those produced by transfer to ewes in Experiment 2. In Experiment 4, the transfer of bovine blastocysts to ewes did not prolong the ovine estrous cycle. In Experiment 5, extension of the ovine estrous cycle by administration of a MAP releasing intravaginal device allowed bovine embryos to elongate extensively and to become filamentous. In Experiment 6, uterine flushings on Day 14 or Day 16 contained elevated levels of interferon-tau when bovine blastocyst were transferred on Day 7. Transfer of bovine embryos to the reproductive tract of a ewe allows some embryos to develop normally to advanced perimplantation stages and may be a useful tool for studying critical stages of embryo development and the developmental capacity of experimental embryos.  相似文献   

10.
11.
The current study assessed both the effects of in vitro culture and developmental stage of early stage in vivo produced ovine embryos on their ability to survive cryopreservation. Early stage embryos (n=226) were recovered from the oviduct, at different days of the early luteal phase, at three different developmental stages: 2- to 4-cell, 5- to 8-cell and 9- to 12-cell. For each stage, half of the embryos were cultured to the blastocyst stage and frozen thereafter (CF), while the remainder was frozen just after recovery (EF). A third experimental group (BF; n=43) included blastocysts obtained from the uterus and frozen immediately after recovery. Embryo viability post-thawing was determined by assessing their rate of development to the hatched blastocyst stage following in vitro culture. Culture negatively affected embryo viability, since survival rate was higher in blastocysts obtained from the uterus than in those from culture (83.7% versus 66.1%; P<0.05); also the cryosurvival of cultured embryos was lower when the timing of blastocyst formation was extended (P<0.01). However, survival following freezing-thawing of early developmental stages was significantly lower when compared to viability of their counterparts cultured to the blastocyst stage (23.1% versus 66.1%, P<0.0001). In conclusion, our results indicate that, despite the deleterious effects of culture per se, the culture of early in vivo produced ovine embryos to the blastocyst stage prior to be frozen improves their survival after thawing.  相似文献   

12.
In the present study we characterize the developmental potential of prepubertal and adult ovine oocytes, analyzing the developmental speed to two-cell and blastocyst stages and its relationship with hatching from the zona pellucida, development after vitrification and the number and allocation of inner mass and trophoblastic cells. Prepubertal and adult ovine oocytes were matured and fertilized in vitro and first cleavage rates at 22, 26 and 32 h were recorded. Cleaved oocytes were cultured and blastocyst production was assessed at 6-9 days post-fertilization (dpf). Blastocysts from the two sources obtained on different days were divided into two groups: the first was vitrified, warmed and cultured in vitro to evaluate re-expansion of the blastocoelic cavity; blastocysts of the second were cultured separately to allow for hatching and count of trophoblastic and inner mass cells of hatched blastocysts by differential staining. We observed a significantly lower rate (P < 0.01) of cleaved prepubertal oocytes at 22 and 26 h after fertilization while it was higher (P<0.01) at 32 h than in the adult ones. Adult blastocyst production was significantly lower (P < 0.01) in prepubertal than in adult groups and began on the seventh dpf, later (P < 0.01) than in the adult group, where they appeared on the sixth dpf. Prepubertal blastocysts hatched at a lower rate than the adult ones (P < 0.01) and in both experimental groups faster blastocysts showed a higher (P < 0.01) hatching rate. Similarly, prepubertal derived blastocysts showed lower viability after vitrification (P < 0.01) compared to the adult counterparts, and in particular slower embryos had reduced viability after vitrification compared to the fastest (P < 0.01). Cell number was not different between blastocysts of both groups obtained at 6 and 7 dpf, which were higher (P < 0.01) than those obtained at 8 and 9 dpf. The ICM/trophoblast cell ratio was similar in 6- and 7-day obtained blastocyst and increased (P < 0.01) in those obtained 1 or 2 days later. These findings show that differences in kinetic development between prepubertal and adult derived embryos reflect differences in developmental capacity of the oocytes from which they derive and could be indicative of embryo quality.  相似文献   

13.
The objective was to determine whether alterations of histone acetylation status in donor cells affected inter-generic SCNT (igSCNT)-cloned embryo development. Leopard cat cells were treated with trichostatin A (TSA; a histone deacetylase inhibitor) for 48 h, and then donor cells were transferred into enucleated oocytes from domestic cats. Compared to non-treated cells, the acetylated histone 3 at lysine 9 (AcH3K9) and histone 4 at lysine 5 (AcH4K5) in the TSA group increased for up to 48 h (P < 0.05). The AcH3K9 signal ratios of igSCNT group was higher than control group 3 h after activation (P < 0.05). Treatment with TSA significantly increased total cell number of blastocysts (109.1 ± 6.9 vs. 71.8 ± 2.9, mean ± SEM), with no significant effects on rates of cleavage or blastocyst development (71.1 ± 2.8 vs. 67.6 ± 2.9 and 12.2 ± 2.6 vs. 11.0 ± 2.6, respectively). When igSCNT cloned embryos were transferred into a domestic cat oviduct and recovered after 8 d, blastocyst development rates and total cell numbers were greater in the TSA-igSCNT group (20.7 ± 3.0% and 2847.6 ± 37.2) than in the control igSCNT group (5.7 ± 2.2% and 652.1 ± 17.6, P < 0.05). Average total cell numbers of blastocysts were approximately 4.4-fold higher in the TSA-igSCNT group (2847.6 ± 37.2, n = 10) than in the control group (652.1 ± 17.6, n = 8; P < 0.05), but were ∼2.9-fold lower than in vivo cat blastocysts produced by intrauterine insemination (8203.8 ± 29.6, n = 5; P < 0.001). Enhanced histone acetylation levels of donor cells improved in vivo developmental competence and quality of inter-generic cloned embryos; however, fewer cells in blastocysts derived from igSCNT than blastocysts produced by insemination may reduce development potential following intergeneric cloning (none of the cloned embryos were maintained to term).  相似文献   

14.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

15.
The present study aimed to assess location and relative amounts of transforming growth factor alpha (TGFalpha) and its receptor (EGFR) in ovine oocytes and preimplantation embryos by using immunohistochemical technique that was graded on a relative scale of 0-3, with 0 representing absence of staining, and 3 exhibiting prominent staining, and to evaluate the effects of TGFalpha/EGF on in vitro development of preimplantation embryos by adding different concentrations of EGF and TGFalpha to culture medium. The results showed that EGFR was abundant in cell plasma membranes in immature and mature oocytes, cumulus cells of immature cumulus-oocyte complexes (COC), fertilized oocytes and at different stages of embryo development. However, the relative amounts in inner cell mass (ICM) (1+) was less than that in trophectoderm (TE) cells (2+) at the blastocysts stage. The staining pattern for TGFalpha was a similar to EGFR. However, the staining for TGFalpha slightly increased in the fertilized oocytes (1-2+) as compared to immature and mature oocytes (1+). TGFalpha was mainly detected in the cytoplasm close to the membrane in both ICM and trophectoderm (TE) cells. The developmental rate of 8-cell stage embryos cultured with 5 ng/ml TGFalpha was increased as compared to other treatments (P<0.05). There was no significant difference in the rate of development of blastocysts cultured with 5 ng/ml TGFalpha, 20 ng/ml EGF, 20 ng/ml EGF+5 ng/ml TGFalpha or the control treatment (P>0.05). In addition, there was no significant difference in the number of cells in blastocyst stage as compared with different treatments (P>0.05). However, TGFalpha alone enhanced cell survival rated (P<0.01) and reduced apoptosis. We concluded that TGFalpha can improve development of ovine preimplantation embryos at the 8-cell and blastocyst stages in vitro.  相似文献   

16.
This study was conducted to elucidate the role of amino acids added singly or in groups to a chemically defined culture medium in blastocyst formation and blastomere proliferation of bovine embryos. Embryos were generated by in vitro fertilization, and blastocyst formation and hatching, and blastomere number of blastocysts were subsequently monitored after the culture of embryos in synthetic oviduct fluid medium (SOFM). First, one of four non-essential amino acids (asparagine, aspartate, glutamate or serine) was added to SOFM and, compared with no addition, a significant (P <0.05) increase in blastocyst formation was found after the addition of asparagine, aspartate, or glutamate (35-42% versus 22%). Second, one of four essential amino acids (arginine, cystine, isoleucine or leucine) was added and arginine or isoleucine greatly improved blastocyst formation (30-36% versus 16%). Third, the addition of five stimulatory amino acids (aspartate, asparagine, glutamate, arginine and isoleucine) to SOFM significantly improved blastocyst formation compared with no addition (12% versus 21%) and such value was similar to that obtained after the addition of 19 amino acids consisting of MEM amino acid solutions (21-27%). However, five amino acids yielded fewer hatched blastocysts than 19 amino acids. Finally, although five amino acids yielded more cell number of blastocysts than no addition (93 versus 74 cells per blastocyst), it was lower than that from 19 amino acids (131 cells per blastocyst). In conclusion, either single or combined addition of asparagine, aspartate, glutamate, arginine and isoleucine stimulated blastocyst formation, while other amino acids might be necessary for further stimulating blastomere proliferation and blastocyst hatching.  相似文献   

17.
18.
19.
In vitro development of eight-cell hamster embryos to hatching blastocysts requires the presence of amino acids and a group of water-soluble vitamins in the culture medium. The present studies investigated the effect of type of macromolecule on blastocyst hatching and on the requirement for vitamins. Embryos were cultured for 3 days in the presence of the synthetic macromolecule polyvinylalcohol (PVA) and of different types of bovine serum albumin (BSA), both with and without vitamins. The results showed th at eight-cell embryos develop to hatching blastocysts in the presence of vitamins and amino acids with PVA as the only macromolecule in the medium. The presence of certain types of BSA reduced but did not eliminate the need for vitamins. Glutamine alone was as efficient as a complete amino acid supplement in supporting blastocyst hatching. These results demonstrate for the first time that eight-cell hamster embryos can be cultured to hatching blastocysts in a chemically defined medium.  相似文献   

20.
Vitrification of in vivo and in vitro produced ovine blastocysts.   总被引:2,自引:0,他引:2  
Although cryopreservation of bovine embryo has made great progress in recent years, little achievement was obtained in ovine embryo freezing, especially in vitro produced embryos. However, a simple and efficient method for cryopreservation of sheep embryos will be important for application of ovine embryonic techniques such as in vitro fertilization, transgenic, cloning and etc. In this study ovine blastocysts, produced in vivo or in vitro, were cryopreserved by vitrification in EFS40 (40% ethylene glycol (EG), 18% ficoll and 0.5 M sucrose) or GFS40 (40% glycerol (GL), 18% ficoll and 0.5 Mol sucrose). In vitro produced, early blastocysts were directly plunged into liquid nitrogen (LN2) after preparation by one of the following procedures at 25 degrees C: (A) equilibration in EFS40 for 1 min; (B) equilibration in EFS40 for 2 min; (C) equilibration in EFS40 for 30 s following pretreatment in 10% EG for 5 min; (D) equilibration in EFS40 for 30 s following pretreatment in EFS20 for 2 min (E) equilibration in GFS30 for 30 s following pretreatment in 10% GL for 5 min. The survival rates observed after thawing and in vitro culture for 12 h were A 78.0% (39/50), B 50.0% (26/52), C 93.3% (70/75), D 92.0% (46/50) and E 68.0% (34/50). Survival rates were not significantly different for treatments C and D (p>0.05), but those for groups C and D were significantly higher than for A, B and E (p<0.05). After 24 h in vitro culture, hatched blastocyst rates were A 28.0% (14/50), B 21.1% (11/52), C 49.3% (37/75), D 48.0% (24/50), E 32.0% (16/50) and control 54.0% (27/50). The hatching rates for groups A, B and E were significantly lower than the control (p<0.05) in which early IVF blastocysts were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min, but for groups C and D it was similar to the control (p>0.05). The freezing procedures A, B and C were used to vitrify in vivo produced, early blastocysts recovered from superovulated ewes. The survival rates of frozen-thawed in vivo embryos were A 94.7% (72/76), B 75.0% (45/60) and C 96.4% (54/56) and for group B was significantly lower than for the other two treatment groups (p<0.05). Hatched blastocyst rates were A 46.0% (35/76), B 26.6% (16/60), C 51.8% (29/56) and the control 56.7% (34/60) in which early blastocysts from superovulation were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min. The hatching rate for treatment B was significantly lower than for the control (p<0.05) but did not differ between groups A, C and the control (p>0.05). Frozen-thawed embryos vitrified by procedure C were transferred into synchronous recipient ewes. Pregnancy and lambing rates were similar for embryos transferred fresh or frozen/thawed for both in vivo and in vitro produced embryos. These rates did not differ between in vivo and in vitro embryos transferred fresh (p>0.05). However, for frozen-thawed embryos, both rates were significantly lower for in vitro than for in vivo produced embryos (p<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号