首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four experiments were conducted to test the effects of Eagle's non-essential amino acids (NEAA) and essential amino acids (EAA), glycine, and the RNA polymerase inhibitor α-amanitin, on the development of preimplantation rabbit embryos in modified protein-free KSOM medium. Embryos were distributed randomly into different treatments and cultured in 5% O2:5% CO2:90% N2. In experiment 1, 100% of the embryos became blastocysts in the medium with Eagle's IX NEAA and 0.5X EAA, but 100% stopped development at the morula stage in KSOM without amino acids. These morulae failed to develop further when transferred to amino acid supplemented medium after 72 hr of culture. Glycine alone in modified KSOM (experiment 2) was ineffective in supporting development of 8–16-cell stage embryos past the morula stage. In experiment 3, the addition of IX NEAA and 0.5X EAA at 0, 12, 24, 36, and 48 hr of culture resulted, respectively, in 57, 65, 65, 44, and 14% blastocysts on Day 3 (P<0.05) and 86, 77, 77, 78, and 69% on Day 5 (P<0.05). Omission of Eagle's amino acids until 48 hr clearly delayed embryo development. In experiment 4, when α-amanitin (20 μM) was added to the medium containing Eagle's amino acids after 0, 12, 24, 36, and 48 hr of culture most embryos cleaved only once or twice after adding the α-amanitin. Without the inhibitor, 94% of the zygotes developed into blastocysts. These results indicate that modified KSOM or KSOM plus glycine could not support rabbit embryo development past the morula stage, but this block was overcome by adding Eagle's amino acids. An exogenous source of amino acids was not critical for embryo development during the first 24 hr of culture, but was required after that for development to equal controls. Addition of α-amanitin at multiple pre-blastocyst stages limited further embryo development to one or two cleavage divisions, with no blastocyst development. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Development of outbred CF1 mouse zygotes in vitro was studied in a chemically defined, protein-free medium both with and without amino acids. The addition of amino acids to protein-free potassium simplex optimized medium (KSOM) had little effect on the proportion of embryos that developed at least to the zona-enclosed blastocyst stage. In contrast, amino acids stimulated very significantly, in a dilution-dependent way, the proportion of blastocysts that at least partially or completely hatched. Amino acids also stimulated cell proliferation in both the trophectoderm and inner cell mass (ICM) cells, at rates that favored proliferation of cells in the ICM; had no effect on the incidence of cell death (oncosis or apoptosis); and improved development of the basement membranes, which form on the blastocoelic surface of the trophectoderm and between the primitive endoderm and the primitive ectoderm. Thus, KSOM, supplemented with amino acids but containing no protein supplements, supports development of a newly fertilized ovum to the late blastocyst stage, in which its normal, three-dimensional structure is preserved and in which the ICM has been partitioned into the primitive ectoderm and primitive endoderm.  相似文献   

3.
4.
Energy substrate preferences of bovine cleavage-stage embryos produced by in vitro maturation and in vitro fertilization were examined in a chemically-defined (protein-free) culture medium modified hamster embryo culture medium-3, (mHECM3). Few inseminated ova cleaved without energy substrates. Glucose and/or glutamine could not support embryo development, but lactate alone was effective (37% 5–8-cells), equivalent to complex medium TCM-199 (44%). Addition of 11 selected amino acids to lactate increased embryo cleavages, although this treatment was not significantly different from pyruvate alone. Addition of glucose to lactate or to pyruvate depressed development. Lactate + amino acids was significantly better than TCM-199 (54% and 26% ≤8-cells, respectively). Blastocyst development was evaluated after transferring ≤8-cell embryos into a complex medium (TCM-199) containing serum. Cleavage-stage embryos produced with pyruvate alone or with lactate + amino acids yielded the highest proportions of blastocysts (36% and 41%, respectively, of inseminated ova). Between 33–63% of blastocysts derived from embryos that were initially developed in mHECM-3 supplemented with various substrates escaped from their zonae (hatched) depending on the treatment, but none of the embryos from the pyruvate + glucose combination hatched. This study shows that optimal energy substrates for bovine cleavage-stage embryo development can be determined using a chemically-defined culture medium, that a simple medium with selected substrates can support early development as well as or better than a complex medium, that a two-step culture system can be used to evaluate blastocyst development from these cleavage-stage embryos, and that timing and hatching of embryos may provide additional information about discriminating between the suitabilities of different substrates for early embryo development. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Hamster embryo development to the blastocyst stage in vitro can be modulated by amino acids. This series of experiments employed both empirically and statistically designed approaches to elucidate which of 20 amino acids inhibit or stimulate development and to devise a complement of amino acids that best supports in vitro development of hamster 1-cell embryos. Development and/or mean cell number were significantly inhibited by the presence of leucine, tyrosine, valine, isoleucine, phenylalanine, arginine, methionine, or cysteine (at 0.5 mM) and isoleucine, phenylalanine, or tryptophan (at 0.05 mM). Three amino acids—glutamine, taurine, and glycine—were stimulatory and in combination improved development; the culture medium containing these amino acids was designated Hamster Embryo Culture Medium-5. Moreover, addition of another eight amino acids—asparagine, aspartic acid, serine, glutamic acid, histidine, lysine, proline and cysteine (medium designated HECM-6)—had a significant stimulatory effect on development over previously formulated culture media for hamster embryos. These results demonstrated that amino acids, alone and in combination, can markedly stimulate or inhibit hamster embryo development in vitro up to the blastocyst stage. Embryo transfer experiments showed that HECM-5 and ?6 (chemically defined, protein-free culture media) supported normal preimplantation embryo development in vitro. This study also indicates that empirically designed embryo culture media formulations can be as effective as those obtained by application of statistical methodologies. © 1995 wiley-Liss, Inc.  相似文献   

6.
Several media, some augmented with amino acids, have been formulated recently, based on simplex optimization, to support the preimplantation development of mouse embryos. For the highly limited studies on preimplantation development of nonhuman primate embryos, a complex medium (CMRL-1066) has been employed. Our objective was to compare the developmental ability of rhesus monkey embryos in a simple medium containing amino acids, KSOM/AA, with the complex media used previously. Zygotes (99) were recovered following in vitro fertilization (IVF) from six monkeys, allocated to either CMRL or KSOM/AA both containing 10% fetal calf serum (FCS), and monitored daily until reaching the expanded or hatched blastocyst stage. The distribution of cells between the inner cell mass (ICM) and trophectoderm was determined at the end of culture by differential nuclear staining. Although a greater number of embryos cultured in KSOM/AA vs. CMRL developed to the morula stage (80%) and beyond (66% to expanded blastocyst), the differences were not significant. Such embryos in KSOM/AA did, however, develop at a significantly faster rate, on average, reaching the expanded blastocyst stage 26 hr earlier than did embryos cultured in CMRL. KSOM/AA embryos hatched in less time and had a higher percentage (43 vs. 34) of cells allocated to the ICM. These results indicate that a simple medium, KSOM/AA, in the presence of serum, supports the development of rhesus monkey embryos at high efficiency and at a faster rate than that observed for embryos cultured in the complex medium, CMRL-1066. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Glucose inhibits development of hamster 8-cell embryos in vitro   总被引:3,自引:0,他引:3  
Relative preferences of energy substrates (glucose, pyruvate, and lactate) for in vitro development of hamster 8-cell embryos were investigated. Using protein-free modified Tyrode's medium (TLP-PVA) containing 10 mM lactate (L), 0.1 mM pyruvate (P), and amino acids (Phe, Ile, Met and Gln), we found that development of hamster 8-cell embryos to blastocysts was supported better in the absence of glucose than in medium containing (standard) 5 mM glucose (88.1% and 50%, respectively). Addition of even 0.25 mM glucose to the medium significantly inhibited blastocyst formation (54.1%). Medium T-PVA, containing 5 mM glucose as sole energy substrate (without pyruvate, lactate, and amino acids), very poorly supported embryo development (less than or equal to 7.9% blastocysts), but addition of 0.1 mM pyruvate enhanced blastocyst formation (52%). Elimination of pyruvate in TL-PVA medium containing 5 mM glucose and amino acids markedly reduced blastocyst formation by 4-fold (13.5%); the optimal pyruvate concentration was 0.2 mM. However, if the same medium was devoid of glucose, blastocyst formation was high both in the absence (71.1%) and presence (83.3%) of 0.1 mM pyruvate. Similarly, in glucose-free T-PVA medium, addition of either 10 mM lactate or amino acids supported 8-cell embryo development to blastocysts (61.7% and 60.5%, respectively) as opposed to 18.8% and 30.6%, respectively, in the presence of 5 mM glucose. This augmented development in the absence of glucose is suggested to the due to the efficient conversion of lactate to pyruvate and of amino acids to amphibolic intermediates and hence their utilization via the Krebs cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aim of the study was to determine the amino acid requirements of the in vitro-produced bovine embryo as it develops from the zygote to the blastocyst, using a two-step culture system. When added to synthetic oviduct fluid (SOF) for the first 72-h culture, Eagle's nonessential amino acids and glutamine (NeGln) significantly increased development to the 8- to 16-cell stage (Day 4 postinsemination [pi]) and subsequent blastocyst development (Day 7 pi). Glutamine alone during the first 72-h culture did not stimulate development to the 8- to 16-cell stage (p > 0.05); however, the removal of glutamine from NeGln reduced the stimulatory effects of the nonessential amino acids. Replacing glutamine with betaine (an organic osmolyte) in NeGln did not stimulate development to the 8- to 16-cell stage compared to culture in SOF, but it did improve subsequent blastocyst development, indicating an osmolytic function of glutamine during the first 72-h culture. The addition of Eagle's essential amino acids and glutamine to SOF, or to medium already containing nonessential amino acids and glutamine for the first 72-h culture, did not affect cleavage to the 8- to 16-cell stage or subsequent blastocyst development (p > 0.05). Beyond Day 4 pi, culture with 20aa (nonessential and essential amino acids and glutamine) increased blastocyst development, total cell number, and the number of cells in both the trophectoderm and inner cell mass, compared to culture with other groups of amino acids (p < 0.05). Substituting betaine for glutamine in 20aa reduced blastocyst formation, indicating a non-osmolytic function of glutamine during the second 72-h culture. Further, there was a significant negative correlation between the concentration of essential amino acids (quarter, half, or single strength) and embryo development during both the first 72-h and second 72-h culture (p < 0.01), indicating that the concentration of essential amino acids was too high during culture of the bovine embryo. This study identified the temporal and differential effects of amino acids during development of the bovine embryo from the zygote to the blastocyst.  相似文献   

9.
Experiments were conducted to investigate the beneficial effects of adding retinol (RT) and retinoic acid (RA) to bovine oocyte maturation media and insulin-like growth factor-I (IGF-I) to embryo culture under chemically-defined conditions. In Experiment 1.1, in vitro maturation (IVM) was performed in basic maturation media (bMM) and supplemented with 0.3microM RT or 0.5microM RA. For embryo development presumptive zygotes and embryos were placed in droplets of potassium simplex optimized medium (KSOM). Addition of RT and RA to bMM improved (p<0.05) blastocyst formation as compared with control treatments. In Experiment 1.2, using embryos originating from oocytes previously treated with RT and RA, the presumptive zygotes were placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The number of 2-4-cell stage embryos developing to the blastocyst and expanded blastocyst stages were greater (p<0.05) when embryo culture media was supplemented with IGF-I. In Experiment 2.1, IVM was conducted with bMM+FSH containing 0.3microM RT or 0.5microM RA. For embryo development, presumptive zygotes were placed in droplets of KSOM. Addition of RT or RA to IVM medium also enhanced (p<0.05) blastocyst formation. The supplementation of embryo culture media with IGF-I resulted in a greater number (p<0.05) of 2-4-cell stage embryos developing into blastocysts, expanded blastocysts and hatched blastocysts. In Experiment 2.2, using embryos originating from oocytes previously treated with RT and RA, presumptive zygotes were also placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The supplementation of embryo culture media with IGF-I resulted in a greater (p<0.05) number of 2-4-cell stage embryos developing to the blastocyst, expanded blastocyst and hatched blastocyst stages.  相似文献   

10.
As the pig becomes increasingly used for biomedical research, an effective and efficient in vitro culture system is essential. This study aimed to improve the commonly used porcine embryo culture medium, NCSU23, by altering the energy substrates and adding amino acids, using electrically activated diploid parthenotes from oocytes obtained from the ovaries of prepubertal and adult animals. Morphological development to day 6 and blastocyst cell number were examined. Glucose (5.56 mM) was replaced by pyruvate and lactate (0.2 mM and 5.7 mM, respectively) for either the entire culture period or for the first 48 h only. Blastocyst rates were not different between any of the treatments, and were similar for prepubertal and adult oocytes. When the embryos were cultured with pyruvate and lactate for the first 48 h and then glucose, there was a significant increase in blastocyst cell number compared to glucose only. Blastocysts produced using pyruvate and lactate for the entire time tended to have more cells than those exposed to glucose only and less than those who were cultured in pyruvate and lactate for the first 48 h and then glucose. Nonessential amino acids added for the first 48 h and nonessential and essential amino acids added for the remaining time significantly increased blastocyst cell number only when the embryos were grown in pyruvate and lactate followed by glucose. Blastocyst rates were not different between any of the treatments, and this result was the same when using sow or gilt oocytes. The modified medium was then tested using in vitro matured and fertilized embryos from sow oocytes. Blastocyst rates and cell number were significantly increased in the modified medium compared to those grown in unmodified NCSU23. This shows that altering energy substrates and adding amino acids can increase the quantity and cell number of IVP blastocysts compared with NCSU23.  相似文献   

11.
We tested the effects of the amino acids and vitamins in minimum essential medium (MEM) and Eagle's medium (BME) on pig blastocyst development and nuclei number. Embryos were recovered either 5 or 6 d after first detected estrus and were cultured for 96 h in U-bottomed wells (0.2 ml). In Experiment 1, addition of MEM amino acids and vitamins to modified Krebs-Ringer bicarbonate (MKRB) medium containing either bovine serum albumin (BSA, 4 mg/ml) or lamb serum (10%, v/v) resulted in fewer (P<0.001) nuclei and smaller (P<0.05) embryo volumes at the end of culture as compared to embryos cultured in MKRB without MEM-supplements. Addition of MEM-amino acids without glutamine (Experiment II) depressed blastocyst volume and rate of hatching, but glutamine (2 mM) had no effect on embryo development. Dialysis (molecular weight > 12,000 retained) of fetal bovine serum (Experiment III) did not affect blastocyst expansion but reduced (P<0.05) the number of nuclei/blastocyst at the end of the culture. Embryos cultured in MKRB with dialyzed serum and the amino acids and vitamins in BME were smaller (P<0.05) and had fewer (P<0.05) nuclei than embryos cultured in MKRB with dialyzed serum but without the BME-supplements. We conclude that, under our culture conditions, MEM and BME amino acids and vitamins are detrimental to the development of early pig blastocysts and that this effect is not due to glutamine. Also, dialysis of fetal bovine serum removes some component(s) that are important for cell division by pig embryos, but it does not affect blastocyst expansion.  相似文献   

12.
The effects of aphidicolin and α-amanitin on DNA synthesis by preimplantation mouse embryos were studied. It was found that both blastocyst and 8-cell embryos showed marked inhibition of 3H-thymidine incorporation into DNA by aphidicolin at concentrations of 20–50 μg/ml. However, aphidicolin did not inhibit the conversion of morula embryos to blastocyst embryos, although aphidicolin-treated blastocysts lost their blastocoel and collapsed into a compact form after prolonged exposure to the drug. Both 8-cell and blastocyst embryos were found to be susceptible to inhibition of DNA synthesis by α-amanitin.  相似文献   

13.
The uptake of l-methionine-methyl-3H and l-leucine-3H from completely defined medium into acid-soluble fractions of preimplantation mouse embryos has been studied. Late four-cell embryos and early blastocysts raised in vitro can concentrate both amino acids by processes which exhibit saturable, Michaelis-Menten type kinetics, characteristic of carrier-mediated active transport systems. This uptake is temperature-sensitive and inhibited by certain amino acids which compete for the same uptake sites. Methionine uptake seems to be mediated by a single transport system (Km = 6.25 × 10?5M) at the four-cell stage. Complex kinetics suggest that two distinct transport systems exist at the early blastocyst stage (Km = 6.25 × 10?5M; 8.9 × 10?4M). Vmax values (mg/embryo/15 min) for methionine and leucine transport increase significantly from the late four-cell stage to the blastocyst stage, suggesting that additional carriers are produced or activated during development.Most importantly, leucine and methionine transport is Na+-independent at the four-cell stage, methionine transport is partially dependent at the morula stage, and both amino acids are completely Na+-dependent at the blastocyst stage. The cumulative results suggest that preimplantation embryos accumulate leucine and methionine by specific, chemically mediated, active transport systems. The qualitative and quantitative developmental changes in cell membrane function may represent preparatory steps for subsequent growth of embryonic and/or trophoblastic cells.  相似文献   

14.
In vitro culture (IVC) systems are required for many biotechnological and assisted reproductive technologies and the researchers have been modifying in vitro embryo culture conditions to reach the comparable efficiencies provided in vivo. In the present study, the effects of beta-mercaptoethanol (Beta-ME) and amino acids (AA) on the development of mouse embryos obtained in vivo or in vitro at different stages were investigated. Chemically defined potassium simplex optimized medium (KSOM) was used as basic culture medium and six experimental groups were established and by supplementation of Beta-ME and AA into KSOM media. The quality of blastocysts was evaluated by counting the cells and determining the ratio of inner cell mass (ICM) to trophoectoderm (TE) cells. In addition, embryo transfer (ET) was performed to investigate the rate of implantation and live fetuses. The results obtained in the present study demonstrated that the combined treatment of Beta-ME and AA to 1-cell stage embryos not only enhanced in vitro development to the blastocyst stage but also improved both the number of blastocysts cells and live fetuses.  相似文献   

15.
The present study determines the effect of a specific and an irreversible inhibitor of histidine decarboxylase (HDC), α-fluoromethylhistidine (α-FMH) on the mouse preimplantation embryo development in vitro. The embryo culture technique was used to assess the effect of α-FMH. Embryos recovered at 0800–0900 hr (AM) on day 3 of pregnancy were 4–8 cells, whereas those recovered at 1600–1630 hr were mostly 8-cell compacted embryos. Of the day 3-AM embryos, 81.3 ± 4.3% developed to blastocysts within 48 hr when cultured in the medium alone, but addition of α-FMH (0.19 or 0.38 mM) drastically reduced the blastocyst formation to 26.6 ± 7 or 16.8 ± 4.3%. Most of them were arrested before the compaction stage. Addition of L-histidine, the substrate for HDC, did not alter the inhibition of blastocyst formation in the presence of α-FMH (37.2 ± 10.9%). Of the day 3-PM embryos, 99.3 ± 0.7% developed to blastocyst stage when cultured in the medium alone and addition of α-FMH (0.19 or 0.38 mM) did not affect the embryo development (92.1 ± 4.3 or 81.9 ± 9.9% developed to blastocysts). The birth of healthy young following transfer of these blastocysts into pseudopregnant mice indicates normal development of the embryos under this condition. The results suggest that histamine synthesis may be required for the process of compaction and thus the formation of blastocyst.  相似文献   

16.
17.
The present study evaluated the possible embryotrophic role of fructose supplementation in chemically defined protein-free KSOM on in vitro development of bovine transgenic cloned embryos. Bovine fetal fibroblasts transfected with expression plasmids for bovine prion protein (PrP) mutant gene with GFP marker gene were used as donor nuclei for reconstruction of slaughterhouse-derived in vitro matured oocytes. The reconstructed oocytes were cultured in KSOM supplemented with 0.01% PVA (KSOM-PVA) at 39 degrees C in a humidified atmosphere of 5% CO2, 5% O2 and 90% N2 for 192 h. In Experiment 1, when reconstructed oocytes were cultured in KSOM-PVA supplemented with glucose (0.2 mM), fructose (1.5 mM) or combined glucose and fructose (0.2 and 1.5 mM, respectively), significantly (p < 0.05) higher blastocyst (19.2%) and hatching/hatched blastocyst (13.1%) formation rates were obtained in combined fructose and glucose supplemented medium than glucose supplemented counterpart (10.0% and 5.7%, respectively). In Experiment 2, when reconstructed oocytes were cultured in KSOM-PVA supplemented with 0.0, 0.2, 1.5, 3.0 and 5.6 mM fructose in combination with 0.2 mM glucose, the blastocyst formation rate was significantly higher (17.6%) in 1.5 mM fructose supplemented group than that of no fructose supplemented counterpart (9.7%; p > 0.05). In conclusion, supplementation of combined fructose (1.5 mM) and glucose (0.2 mM) in chemically defined protein-free KSOM enhances the in vitro development of bovine transgenic cloned embryos.  相似文献   

18.
Amino acid transport regulation and early embryo development   总被引:1,自引:0,他引:1  
Amino acids are essential components of media utilized to culture fertilized human eggs to the blastocyst stage in vitro. Use of such media has led to a significant increase in the proportion of embryos that implant upon transfer to the uterus and to a decrease in the number that need to be transferred to achieve pregnancy. Little is known about the mechanisms by which amino acids foster development of healthy human blastocysts. Indications are, however, that many of these mechanisms are the same in human and mouse embryos. Both essential and nonessential amino acid transport benefit preimplantation mouse embryo development, albeit at different stages. Nonessential amino acid transport improves development primarily during cleavage, whereas essential amino acid transport supports development of more viable embryos, especially subsequent to the eight-cell stage. This review discusses likely mechanisms for these beneficial effects.  相似文献   

19.
The influence of sodium dihydrogen phosphate (Pi) and glucose on the development of hamster 8-cell embryos mediated by pyruvate (P) or amino acids (A) or lactate (L) was investigated using modified Tyrode's medium, TLP-PVA. When pyruvate was tested as the only energy substrate in medium TP-PVA for embryo development, blastocyst formation ranged from 81.3 to 90.9% whether or not the medium contained 0.35 mM Pi or 5 mM glucose; but, when these two compounds were present together, blastocyst formation fell to 51.8%. Similarly, in TA-PVA medium containing four amino acids: Phe, Ile, Met, and Gln), embryo development to blastocyst ranged from 74.1% to 90.4% whether or not the medium contained 0.35 mM Pi or 5 mM glucose; but, when these compounds were present together, blastocyst formation fell to 16.0%. In TL-PVA medium, 10 mM sodium lactate supported embryo development (84.4% blastocysts); the addition of 0.35 mM Pi decreased blastocyst development to 65.6%. However, addition of glucose to Pi-free TL-PVA medium did not decrease blastocyst formation (81.3%); when the medium contained 0.35 mM Pi, glucose curtailed blastocyst development to 7.5%. When glucose and Pi interactions were studied at different concentrations, glucose up to 1 mM was not inhibitory in Pi-free TL-PVA medium (74.3% blastocysts), but 0.25 mM glucose in the presence of 0.35 mM Pi markedly inhibited embryo development (7.7% blastocysts). Phosphate at a relatively high concentration (1 mM) was inhibitory (37.9% blastocysts), even in the absence of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effect of simple and sequential embryo culture media on the preimplantation development of mouse nuclear transfer (NT) embryos reconstructed with cumulus cell nuclei using a mechanical NT technique was studied. Blastocyst formation rate was evaluated using CZB medium and the sequential media G1/G2 and KSOM/G2. Arrested two- and three-cell NT embryos were Hoechst-stained to check for nuclear abnormalities. Nonmanipulated and sham-manipulated parthenogenetic embryos served as controls for, respectively, the medium and the handling technique. Rates of blastocyst formation for medium and handling control embryos were similar in CZB (58% and 61%), in G1/G2 (94% and 85%), and in KSOM/G2 (88% and 84%). Development of NT embryos was significantly impaired from the two-cell stage onwards, reaching the blastocyst stage at a rate of 5% in CZB, 14% in G1/G2, and 28% in KSOM/G2. Arrested two- and three-cell stage NT embryos showed a high rate of binucleation. These data demonstrate not only that NT embryos are more sensitive to in vitro culture conditions than parthenogenetic control embryos but also that selection of culture media can influence the preimplantation development of NT embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号